
Network Time Protocol
Ahmed Almohsin

amalmohsin21@tntech.edu

ABSTRACT
In this paper, we describe the network time protocol.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
protocols

General Terms
Algorithms, Management, Measurement, Documentation,
Performance, Design, Reliability, Experimentation, Security,
Standardization, Languages, Verification.

Keywords
Network, synchronization, protocol.

1. Introduction
The Network Time Protocol (NTP) is a time synchronization
system for computer clocks that operates through the Internet
network. It was mainly developed at Delaware University and is
evolved from Time Protocol and the ICMP Timestamp Message,
but is specifically designed for high accuracy, stability, and
reliability, even when used over typical Internet paths involving
multiple gateways and unreliable networks. There are three
versions of NTP that have been developed over the years. The
first was developed in 1988, the second was in 1989, and the third
version that we use today was developed in 1992. The current
version is compatible with all the previous versions and in 1995 a
second type of NTP was defined called the Simplified NTP
(SNTP). The complete kind of NTP implements all the features
of NTP but the simplified kind implements only a subset of NTP.
SNTP types can work only as a client and can have only 1 defined
server at any given time.

2. How it works
NTP works by obtaining the reference clocks from the machines
in the network. The times are passed using UDP/IP packets
because of the fast connection setup and response times. The
times are used to compute some additional statistical values that
describe the quality of the time it sees. Thus it maintains an
estimate of the quality the reference clocks of the network and its
own reference clock.

3. Characteristics
There are a few main characteristics that define NTP. It is fully
automatic meaning it keeps synchronization continuously. It is
suitable to synchronize one computer or a whole network of
computers. NTP carries UTC time which is independent of time

zones and day-light savings time; this is set by the individual
computer or user. The accuracy of NTP’s synchronization can
reach up to 1 millisecond.
A NTP primary server is a computer connected to a high precision
reference clock equipped with the NTP software. Other
computers automatically query the primary server to synchronize
their clocks. The primary server is also called stratum 1, the
computers that connect to it are called stratum 2, and the ones
connected to those stratum 3, and it keeps going all the way to 16
stratums. Being higher in the stratums will cause the accuracy to
be less and less as you get further from the primary server.

4. In the operating systems
The current Operating Systems, ones based on Linux/Unix and
Windows, use NTP to synchronize their clocks. Windows XP
uses NTP but computers running Windows server 2003 use
SNTP. Windows synchronizes the clock when it starts up and at
intervals while running in order to insure that software activation
doesn’t fail due to clock times too far apart (Microsoft TechNet
2004). Unix started out using it’s own synchronization method
called “timed” but it was developed only to keep synchronization
over a local Ethernet and it’s clock discipline algorithms failed in
comparison to that which was later implemented in NTP. NTP
version 0 was implemented in 1985 in Unix by Louis Mamakos
and Michael Petry at the University of Maryland. Fragments of
the Unix code still survive in the software running today (Mills
2003).

5. Brief history
It was discovered that NTP could be used for more than just
synchronizing time. Around 1985 Project Athena at MIT was
developing the Kerberos security model, which provides
cryptographic authentication of users and services. The
fundamental part of the Kerberos design was the use of a ticket to
access computer and network services. Tickets have a designated
lifetime and must be securely revoked when their lifespan has
ended. Thus, all Kerberos facilities had to have secure time
synchronization services so NTP was chosen. NTP alone was
inadequate to deflect sophisticated attacks so a method of
authenticating NTP packets using symmetric key cryptography
with keyed message digests and private keys was implemented
(Mills 2004).

6. Conclusion
NTP started out as a way to keep our clocks synchronized across a
network. It then grew to an even larger network in the Internet,

and is even being used to authenticate users for computer and
network services. NTP today is major part of how, if, and when
our networks operate.

7. Python NTP code sample

from socket import *
import struct
import sys
import time

TIME1970 = 2208988800L

client = socket(AF_INET, SOCK_DGRAM)
data = '\x1b' + 47 * '\0'
client.sendto(data, ('time.tntech.edu', 123))
data, address = client.recvfrom(1024)
if data:
 print 'Response received from:', address
 t = struct.unpack('!12I', data)[10]
 t -= TIME1970
 print '\tTime=%s' % time.ctime(t)

8. Ruby NTP code sample

require 'optparse'
require 'socket'

SNTP_MSG = "\010" + "\0" * 47
SNTP_PORT = 123
NTP_UNIX_TIME = 2208988800

set_time = false

unless ARGV[0]
 puts opts
 exit
end

data = UDPSocket.open do |sd|
 sd.send(SNTP_MSG, 0, ARGV[0], SNTP_PORT)
 sd.recvfrom(64)[0]
end

data = data.unpack('N12')[10].to_i - NTP_UNIX_TIME
time = Time.at(data)

9. References
Microsoft TechNet. (2004). Windows Time Service.

http://technet.microsoft.com/en-
us/library/bb490605.aspx

Mills, David L. (1994). Precision Synchronization of Computer
Network Clocks. ACM SIGCOMM Computer
Communication Review. Vol 24, Issue 2. pg 28-43.
http://doi.acm.org/10.1145/185595.185651

Mills, David L. (2003). A brief history of NTP time: memoirs of
an Internet timekeeper. ACM SIGCOMM Computer
Communication Review. Vol 33, Issue 2. pg 9-21.
http://doi.acm.org/10.1145/956981.956983

http://doi.acm.org/10.1145/956981.956983
http://doi.acm.org/10.1145/185595.185651
http://technet.microsoft.com/en-us/library/bb490605.aspx
http://technet.microsoft.com/en-us/library/bb490605.aspx

	1. Introduction
	2. How it works
	3. Characteristics
	4. In the operating systems
	5. Brief history
	6. Conclusion
	7. Python NTP code sample
	8. Ruby NTP code sample
	9. References

