
File Systems
Justin Groce

Systems Programming

jbgroce21@tnech.edu

ABSTRACT

File Systems (FS) are fundamental to modern computing. A FS is

the way a computer or network stores files. This involves, among

other things, how a file is stored, how a file is altered, and how a

file is retrieved. Obviously, a single computer would have a

different FS than a network of multiple computers. While it would

likely have a different FS implementation, the concept remains

very similar regardless of scale. What happens if the machine the

files are stored on is unexpectedly shutdown? Who has permission

to access or change files? These are some of the questions that

must be answered for any FS.

There are many different implementations of FS. These

implementations differ in the delivery methods of getting the file

from its location in physical memory to its destination. The major

implementations of FS discussed in this paper are the Network

File System (NFS), the Andrew File System (AFS), the Google

File System (GFS), and ZFS. Core procedures and conventions

will also be discussed. For simplicity’s sake, distributed or

network FS will be focused on.

Keywords

FS, File System, Network, DFS, AFS, GFS, ZFS.

1. How does it work
A file system (FS) is a blueprint of how to organize files. Initially,

FS relied heavily on specific system calls straight from FS calls

[5]. This approach hinders the effort to expand upon the system

with more FS.

Abstraction was used with FS by introducing the virtual node

(vnode) to the FS. A vnode provides distance from the operation

system from the FS. This abstraction allows for operating systems

to support many different file systems. Linux 2.6, for example,

can support over 30 FS [5].

When implementing vnodes, it is possible to layer multiple FS on

top of each other. This is achieved by one vnode calling another

until the operating system is reached to do the desired operation.

This layered approach also give the advantage of adding

functionality in the middle layers without affecting the overall

outcome of an operation. Designing vnodes to do extra operations

is much simpler than trying to change the operating system in

some nontrivial way [5].

A commonly supported FS is the Network File System (NFS).

NFS like other FS provides the possibility to share files and

directories with multiple clients over a network. This is beneficial

for users because local machines use less of their own disk space

when they store commonly used files on a central machine that is

accessible by those that use the file. That way a user can even

move from machine to machine and still have all the files they

need. The user does not need a directory on each machine with

copies of their files in multiple locations.

NFS operates on a client server model. Thus, a client connects to

a server and requests data. Then, the server responds to the client

with the requested data.

Another specific FS is the Andrew File System (AFS). AFS is a

popular FS that was designed at Carnegie Mellon University. The

Distributed File System (DFS) is simply one version of AFS [3].

In terms of architecture, AFS is similar to NFS in that they both

provide a method of connecting client and server machines in a

shared system. However, AFS is specially designed to provide

reliable file services on a large scale. This is accomplished with

cells. In AFS, a cell is a group of client systems and file servers. A

cell is managed by a single authority [3].

AFS cells have a privacy policy as well. A user can access files

easily within the cell, but a user much have permission to access

the files in another cell. The purpose of having cells is to take the

operating system out of the equation. Much like vnodes, cells can

be in between the user and the operation system [3].

AFS is set up to use the client server paradigm. That is to say that

a client makes a request to the server for a file service and the

server subsequently responds with the information. The server

also keeps track of the structure of the FS by monitoring the files,

the status of the FS, and verification of clients [3].

AFS has some features that NFS does not have. There features

include using file names that are not tied directly to physical

addresses, caching in the clients to lower the load of the network,

and data encryption for security purposes [3].

One of the biggest FS is one of the most secretive (kind of). That

FS is the Google File System (GFS). Google is a huge company,

and GFS is used by many people. This being said, the GFS does

not use fancy, state of the art computers in its implementation.

While there is a lot that non-Google employees don’t know, it is

known that GFS is implemented by inexpensive machines using

the Linux operating system. So the computers used in GFS are not

the intriguing part of the FS. The way Google uses these machines

is intriguing [4].

GFS is organized into networks of machines called clusters.

Clusters can have hundreds of machines in them. Clusters could

even have thousands of machines in them. The clusters are

organized into three different classifications. Those classifications

are client, master server and chunkserver [4].

A client with respect to GFS refers to a machine or application

that makes a request. A client can request to retrieve a file, to

manipulate an existing file, or to create a new file [4].

A master server with respect to GFS is the server that coordinates

the cluster. The master logs all the activities that happen in the

cluster. The purpose of keeping the log is to minimize downtime.

However, if a master server crashes, then there is another server

ready to take its place. It is important to note that there is only one

master server active in a cluster at a time. The master also keeps

track of the location of the chunks throughout the cluster. A

chunk is a portion of a file. Because GFS typically works with

large files, the files are broken up into chunks. In order to do all

of the duties that a master server must do, the master server

doesn’t actually handle file data. The master server sends and

receives small messages and leaves to hard work to the

chunkservers. This keeps network traffic to a minimum [4].

A chunkserver with respect to GFS is the server that does all the

real work. Chunkservers store all the chunks for all the files in the

cluster. They actually store copies of the chunks. At one time,

there are about three copies of each chunk spread out to different

chunkservers. This is to prevent loss of data in the event of a

chunkserver going offline for any reason [4].

To discuss ZFS, this paper will focus on the Oracle Solaris ZFS.

The main concept in ZFS is the idea of virtual memory. This idea

removes the FS from keeping data in physical storage. This allows

the machines used in the implementation to be used more

efficiently. With virtual memory, the actually physical storage

device can be added to the virtual memory pool with no

interruption of service [2].

ZFS is constantly checking its data to make sure it is up to date

and correct. If an error is found, there are procedures in place that

correct the error behind the scenes, again without interrupting

service [2].

Another method of error checking is journaling. Almost any

implementation of a FS will use some sort of journaling.

Journaling is simply keeping a record of events that happen in the

FS. In the event of an error or complete system failure, the system

can be brought back to a working state by replaying the journal

[1].

2. Conclusion
A File System (FS) is essential for any reasonable network of

computers. A FS allows the sharing of data between machines in

an efficient way. The possible implementations vary differently

and as seen in this paper, there are many. Depending on the size

of the network and the amount of data being transmitted, one

could choose from multiple different implementations.

Most implementations of FS are open source to the public at least

on an abstract basis. This allows anyone to implement a FS

similar to the mainstream one. To pick which FS is right for a

particular network, one must simply compare the resources in the

network and the desired speed of data transmission to the

descriptions of an existing FS. Once a FS is chosen, it is simple to

implement it by following the steps laid out in the description of

the FS.

3. REFERENCES
[1] Frost, Christopher and Mike Mammarella, Eddie Kohler,

Andrew de los Reyes, Shant Hovsepian, Andrew Matsuoka,

Lei Zhang "Generalized File System Dependencies" (Nov

2010)

http://delivery.acm.org.ezproxy.tntech.edu/10.1145/1300000

/1294291/p307-

frost.pdf?key1=1294291&key2=4183940921&coll=DL&dl=

ACM&CFID=112200312&CFTOKEN=93840110

[2] "ORACLE SOLARIS ZFS" (Nov 2010)

http://www.oracle.com/us/products/servers-

storage/solaris/034779.pdf

[3] Sheldon, Tom "AFS (Andrew File System)" (Nov 2010)

http://www.linktionary.com/a/afs.html

[4] Strickland, Jonathan "How the Google File System Works"

(Nov 2010)

http://communication.howstuffworks.com/google-file-

system.htm

[5] Zadok, Erez and Rakesh Iyer, Nikolai Joukov, Gopalan

Sivathan, Charles P. Wright "On Incremental File System

Development" (Nov 2010)

http://delivery.acm.org.ezproxy.tntech.edu/10.1145/1150000

/1149979/p161-

zadok.pdf?key1=1149979&key2=5333940921&coll=DL&dl

=ACM&CFID=112200312&CFTOKEN=93840110

