
Domain Name Service
Timothy Myers
Tennessee Tech

344 East 12th Street Apt. 4

Cookeville, TN 38501

931-206-2255

temyers240@gmail.com

ABSTRACT
This paper is a brief overview of the Domain Name Service
(DNS), a goal which can be difficult considering the
pervasiveness of not only DNS as a technology but also of
information on DNS because of its widespread nature. As human
beings, we people like and enjoy the convenience of names, and
this is the service that DNS provides. At its most basic level, it
enables us to have and use names for various machines
somewhere else on a network. There are also, however, other
clever uses of the service that allow for discovering other sorts of
information. However, just like any software system, DNS can be
vulnerable to attack especially when it is not configured properly,
while these attacks can take many forms they all affect the use of
names for our networks. I also hope to look at a few of the
possible configuration errors and attack vectors.

Keywords
DNS, human readability, networking

1. INTRODUCTION
As a starting point in a discussion on DNS, I believe that I can
confidently say that DNS is a technology that has allowed the
large networks that we use, especially the internet. This is
because people are lazy and do not want to remember numbers,
for some reason people like words better than numbers and DNS
has been engineered to turn the numbers that computers use to
identify themselves with and turn that into names so that we can
find the machines, and thus the services that they hold, and use
them for ourselves. However because of the database and cache
system of DNS there have been some people who have been able
to devise ways of retrieving information not normally given by
an indirect means. Unfortunately DNS is not a perfect system, it
has vulnerabilities and weaknesses that range from simply mis-
configuring the system to more subtle things, all of which can
allow someone from the outside to damage the system and cause
problems for a segment of the users using that network.

2. BASICS
As with most services that involve information flow over a
network, there is more than one piece involved. The the
terminology of DNS these are known as the resolver and the
name server [3]. It is the job of the resolver to ask questions to
the name server, and the job of the name server to attempt to find
an answer to the question, but before we delve deeper into that
topic I would like to talk a little bit about the structure of DNS
itself. DNS is a distributed database. Most of the time, when we
think of a database we consider a large file or program whose
purpose is to hold all of the information we need to hold in one

single place, a place with multiple redundant backups, but one
place nonetheless. DNS is nothing like that at all, there is no one
place or file where all of the IP addresses in the world are
attached to a name, it would be so large as to be almost
impossible to find the address you need efficiently. The actual
DNS database is spread out upon many name servers all over the
world, with each name server only having authority, or complete
knowledge, of one domain or subdomain. In order for this system
to work, however, there is one piece that is missing. Each name
server has a knowledge of at least one other name server as well,
so if one name server is asked by the resolver for information
that is not contained locally in his files, he will ask the other
name servers that he knows about for the information, a process
that repeats recursively.

This system ultimately works because the name server tree is set
up in the hierarchical form shown in Figure 1. With the .edu
name server knowing about the name servers for all or almost all
domains that end in .edu, for example. This pattern is repeated
down the tree with the calploy.edu name server knowing about
all subdomains ending in calply.edu[2].

This method alone seems like it would be rather inefficient, as
each query could be required to travel up the entire length of the
originating branch of the hierarchy and down the entire length of
another branch. To this end, both name servers and resolvers can
make use of a local cache to hold the results of recently made
queries[3], a practice that enforces the locality of temporal
reference.

Figure 1: Domain Name Hierarchy [2]

For the sake of robustness, many of the implemented name
servers also attempt to retrieve copies of records from
neighboring name servers at certain intervals[3]. A practice that
can make taking down a certain domain difficult through DNS
attacks because there are usually multiple name servers with the
correct information regarding any specific domain.

3. INFORMATION
The information requested from a name server is normally
thought to be, and usually is an address on the network for a
particular machine. But within those requests other information
about the type of address and other things are to be found as
well.

When a resolver creates a query packet there are several things
that it includes, things such as flags requesting recursion, the
number of questions it is asking, the questions themselves, and
one of the most important parts the type of answer is want back
[3].These types in the query usually match up to the types of the
resource records in the local master file of the name server. A
few examples of the more common types found in master files,
from [3]:

A – (Host Address) The address for a particular machine

NS – (Name Server) The address of another name server on the
network

CNAME – (Alias) An aliased name for the given query

SOA – (Start of Authority) Information about the name server's

authoritative domain

MX – (Mail Exchange) Address for a mail server

In addition, there are a few types only for queries, such as the
type “*” which asks for all resource records matching the request
name.

When responding to a resolver, a name server will look for all
records matching both the query name and the query type, or all
types matching the query name if the query type is “*” and send
that information back to the resolver. The response includes the
question(s) that the resolver asked, presumably for verification
purposes as well as any responses. Because the actual return data
varies with each type, each section of the return data does
include the type of the return record so that correct parsing can
occur, whether it is simply a 4 byte address or a name in the case
of a CNAME record.

This however is not the only way to discover data from a DNS
name server. As web applications have become so prevalent in
recent times, many seek to discover ways of capturing the
popularity of these web services [1]. One way to get a rather
rough estimate of relative popularity is through a technique of
“poking” a name server's cache. This technique sends a request
to the name server with the recursive bit in the flags turned off.
With this flag turned off, any information returned that is not in
the authoritative zone for the name server must be in it's cache.
The name server is “poked” once per Time-To-Live(TTL)
interval of the requested record, and it is determined whether the
record is in the cache and if it is when it entered the cache and
when it will leave based upon the TTL[1]. With this information
the times when that record was not in the cache can be
determined, and thus a measure of relative popularity for that
web service can be obtained for the users of that name server[1].

4. VUNERABLE
As robust as DNS is with its distributed database, human errors
can still crop up and hurt the overall system. Especially where
system configuration, both physically and in software, is
concerned[4]. This results in both severe delay in system
responsiveness and in some cases the negation of the distributed
nature of the system for a specific domain. An example that is
used in [4] is a case of diminished server redundancy where the
Micrsoft DNS services became unavailable when the switch in
front of all of their DNS servers went bad, a case where this error
caused the advantage of having multiple DNS servers to be
negated as none of them were available for use. While
diminished server redundancy seems to be primarily a physical
configuration issue, the next problem of lame delegation is a
software configuration issue. This problem occurs when a server
is listed as an authoritative server for a particular zone, but it
cannot actually provide an authoritative answer[4]. Other than
referring the request to a higher server in the hierarchy, another
form of this is an “authoritative” server which simply does not
respond at all, or gives an error saying that it is not set up
correctly and cannot respond to any requests [4]. At the best one
of the incorrect servers can return a cached value for the address,
but at the worst, a domain or subdomain thought to be connected
through several name servers could actually be hanging one only
one, which not only introduces brittleness into the system, but
also can dramatically increase response time from the servers.
One more issue noticed by the authors of [4] is cyclic zone
dependency, which occurs when two zones decide to help each
other out and provide DNS services for each other. Unfortunately
this involves looking for name server A which needs information
from name server B, which need information from name server
A. In complex environments this error can even occur when both
systems are configured properly and the dependencies are made
to be cyclic. The effects of this are really bad when all of one
organization's name servers go down at once, possibly through
diminished server redundancy mentioned earlier. Not only do
that organizations services become disrupted, but also those of
the other organization in the cycle, as their name servers
depended on the first organization's name servers[4].

5. CONCLSION
Even with the human caused errors that appear in DNS
configurations, DNS is still a relatively stable workhorse. Not
only does it allow us to use names to communicate across
networks, but it also allows us to discover more about the
networks and the traffic on them. From the beginnings of using
names on a network with the host file, to the DNS system we
have today has been a giant, well placed leap in the usability and
convenience of the internet and other vast networks. One that
has and will stand the test of time.

6. REFERENCES

[1] Craig E. Wills , Mikhail Mikhailov , Hao Shang, Inferring
relative popularity of internet applications by actively
querying DNS caches, Proceedings of the 3rd ACM
SIGCOMM conference on Internet measurement, October
27-29, 2003, Miami Beach, FL, USA

[2] Liu, M. I. Distributed Computing Principles and
Applications. Pearson Addison-Wesley, Boston, 2004

[3] P. Mockapetris "Domain Names - Implementation and
Specification," RFC 1035, November 1987. [Online].
Available: http://www.faqs.org/rfcs/rfc1035.html

[4] Vasileios Pappas , Zhiguo Xu , Songwu Lu , Daniel
Massey , Andreas Terzis , Lixia Zhang, Impact of
configuration errors on DNS robustness, ACM SIGCOMM
Computer Communication Review, v.34 n.4, October 2004

	1. INTRODUCTION
	2. BASICS
	3. INFORMATION
	4. VUNERABLE
	5. CONCLSION
	6. REFERENCES

