Inferring Relative Popularity of Internet Applications by
Actively Querying DNS Caches-

Craig E. Wills

Mikhail Mikhailov

Hao Shang

Worcester Polytechnic Institute  Worcester Polytechnic Institute  Worcester Polytechnic Institute

100 Institute Road
Worcester, MA 01609

cew@cs.wpi.edu

ABSTRACT

In this work, we propose a novel methodology that can be
used to assess the relative popularity for any Internet ap-
plication based on the data servers it uses. The basic idea
is to infer popularity of data servers by periodically “pok-
ing” at local Domain Name servers (LDNSs) that service
Domain Name System requests from a set of users running
Internet applications and determining if LDNSs have cached
resource records for the data servers. This approach allows
us to measure the relative percentage of pokes that result in
a cache hit as a coarse measure of the relative popularity of
a particular data server among the users of a given LDNS.
In addition, the time-to-live (TTL) of cached DNS resource
records can be used to measure the gaps in time when a re-
source record for a data server is not cached. The cache gaps
can be used to infer request interarrivals for more popular
data servers.

The methodology can be applied to any Internet appli-
cation that uses distinguished server names and performs
DNS lookups on these names as part of application use. The
methodology can be used to collect usage information from
any LDNS that accepts DNS queries. As example applica-
tions of the methodology, we evaluate the relative popularity
of selected Web sites and the relative popularity of differ-
ent Web servers serving content at a given Web site. We
also apply the methodology to servers providing multimedia
content, data servers for grid computing, and network game
servers. We use data gathered from LDNSs of commercial
and educational sites as well as Internet Service Providers
serving both commercial and home customers.
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1. INTRODUCTION

Internet applications, such as Web browsers, media play-
ers and game software, allow users to access a variety of
content available from servers on the Internet. Studies have
examined the characteristics of content for these applica-
tions, but a difficult question these studies face is under-
standing if, and how frequently, given content is actually
used. Published lists of popular Web sites are one means to
identify servers with popular content, but the methodology
for determining these lists may not be clear. In addition,
these lists only include a small fraction of the popular Web
sites on the Internet, not necessarily the sites of interest.
Alternately, network traces or proxy logs can be used to
obtain real user requests, but these data are often limited
to requests from users in a researcher’s own organization.
Obtaining such data from other organizations is difficult.

In this work, we propose a novel methodology that can be
used to assess the relative popularity for any Internet appli-
cation based on the data servers it uses. The basic idea is to
infer popularity of data servers by periodically “poking” at
local Domain Name servers (LDNSs) that service Domain
Name System (DNS) requests from a set of users running
Internet applications and determining if LDNSs have cached
resource records for the data servers. This approach allows
us to measure the relative percentage of pokes that result in
a cache hit as a coarse measure of the relative popularity of
a particular data server among the users of a given LDNS.
In addition, the time-to-live (TTL) of cached DNS resource
records can be used to measure the gaps in time when a re-
source record for a data server is not cached. The cache gaps
can be used to infer request interarrivals for more popular
data servers.

The methodology is attractive because it can be applied
to any Internet application that uses distinguished server
names and performs DNS lookups on these names as part
of application use. Due to the pervasive use of DNS, the
methodology can be used to answer questions about the rel-
ative popularity for applications and data servers of interest.

The weakness of the approach is that it can only infer
the relative popularity of application server names for users



of a given LDNS; it does not measure the precise network
activity of all users of an application. Obviously more com-
plete information about application usage can be obtained
with logs and packet traces, but these types of information
sources are traditionally difficult to obtain from outside of
one’s local organization. In the case of logs, they may only
be applicable to a particular type of application such as the
Web.

The methodology can be used to collect usage information
from any LDNS that accepts DNS queries to target usage
patterns for populations of users based upon the LDNSs
chosen to study. Although we used 24-hour data collection
in our study, the methodology can also be applied to specific
periods during a day or week.

In the remainder of the paper, Section 2 provides a brief
description on the DNS mechanism as well as related work.
In Section 3 we discuss the methodology in detail includ-
ing how data are gathered and analyzed. In Section 4 we
apply the technique to a log of DNS requests and compare
the results of the technique to known requests. Section 5
raises and addresses potential issues of the approach. In
Section 6 we describe how we identify different categories of
LDNSs for applying the technique. In Section 7 we illus-
trate the methodology by evaluating the relative popularity
of selected Web sites and the relative popularity of differ-
ent Web servers appearing in traversal links at a given Web
site. We also apply the methodology to servers providing
streaming content, network game servers, and data servers
for grid computing. We summarize the work and discuss its
future directions in Section 8.

2. BACKGROUND

2.1 The Domain Name System

The Domain Name System (DNS) is a distributed set of
servers primarily used by Internet applications to lookup the
network address of a given Internet server [13, 14]. An Inter-
net application needing to lookup a server name first sends a
DNS query to a local Domain Name server (LDNS), which
is often located at the same site. The LDNS maintains a
cache of resource records, such as mappings between server
names and IP addresses, called A records. DNS also uses
CNAME records to record canonical names where one name is
an alias for another. If the LDNS contains a cached record to
satisfy the request then it returns the information to the ap-
plication. If not then the LDNS contacts a root DNS server
to obtain the authoritative Domain Name server (ADNS)
for the given resource record and directs a recursive query
towards the ADNS. The record is returned to the LDNS,
which caches the record along with the authoritative TTL
(ATTL) it receives from the ADNS before returning it to
the application. The LDNS normally maintains the resource
record in its cache until the TTL for the record expires.

2.2 Redated Work

Much prior research work related to DNS has been on its
performance and its contribution to overall network traffic.
The first large-scale study of DNS performance examined
DNS traffic at a root name server and found that much
traffic was due to bugs and misconfiguration [5]. Another
study at a DNS root server also found a majority of bogus
queries [2]. A recent study examined the impact of erro-
neous DNS queries and looked at a number of other perfor-
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mance related issues [9]. That study also examined the im-
pact of varying the TTLs on cache hit rates and found that
low-TTLs should not greatly increase DNS-related wide-area
network traffic.

Other work has examined the impact of DNS performance
for specific applications such as the Web. Shaikh et al found
that small TTL values (on the order of seconds) do have
a negative impact on latency when DNS is used to select
among a set of servers [20]. In our own previous study we
found that only 20% of DNS requests are not cached lo-
cally and that 20-30% of the non-cached lookups take more
than one second [22]. Cohen and Kaplan have proposed pro-
actively refreshing stale cache records to reduce the impact
of DNS latency [3].

All of these studies focus on the use and performance of
the DNS mechanism and not on the potential of using in-
formation in the local DNS server caches to infer usage in-
formation. As part of our methodology it is important to
identify local DNS servers. This type of identification is
related to work in [4] to automatically identify LDNS and
ADNSs from graphs of DNS traffic.

3. METHODOLOGY

Our basic methodology is to track the presence of a given
server name in the cache of a LDNS. The frequency at which
a resource record for the server exists in the LDNS cache is a
measure of how frequently the server name is used in a DNS
lookup. In the following we describe the methodology for
gathering data on the presence of a server name in a LDNS
cache and how these data are analyzed to infer relative pop-
ularity.

3.1 Data Gathering

Figure 1 is used for reference to describe data gathering
and analysis. It shows a timeline of DNS requests for a given
server name to a particular LDNS. For discussion, we assume
the timeline is in units of minutes and that the ATTL for
the server name is 5 minutes. In the figure, DNS requests
generated by applications are represented by vertical lines
just above the timeline. For a request, the LDNS either
responds with information from a cached resource record or,
if not present, the LDNS generates a recursive DNS query
to obtain an authoritative response for the record, which
has an ATTL of 5 minutes. The example shows that the
first query occurs at time 2m, which causes the record to
be brought into the cache with a TTL of 5 minutes. For
the next 5 minutes, all DNS queries are satisfied from the
cache. At time 7m, the record expires so that the next query
at time 7m30s causes the cache to be refilled and so on.

Under the timeline in Figure 1 are shown what we refer
to as “pokes.” A poke is a DNS query sent to the LDNS
where the query is specified to be non-recursive. We use
the tool dig to make these queries, but other similar tools
could be used. The LDNS responds to a poke in the same
way it responds to a normal DNS query except that with
the non-recursive bit set, the LDNS reports no answers if a
cached record is not available. Use of the non-recursive flag
is important because it means our pokes do not pollute the
cache. The only way in which the LDNS cache is filled is
through requests from other applications.

Because a cached DNS record is small in size, it is ex-
pected to reside in the cache for the duration of its ATTL
(we discuss the implications if it does not in Section 5).
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Figure 1: Methodology Description

Therefore, it is not worthwhile to poke at the cache more
frequently than the ATTL for a cached record. Thus in the
example, we show four pokes spaced 5 minutes apart that
arbitrarily begin at time 1m. At each poke we record the
time of the poke and if a cached resource record exists in
the cache. If it does we also record its current TTL. It is
also possible that a response is not received due to a time
out in which case we record that an error occurred at the
given time.

3.2 Analysis

Two types of analysis can be done on a series of poke re-
sults for a given server at a given LDNS. First we can simply
determine the cache hit rate over the period of time. The
hit rate is the percentage of successful pokes that found a
cached record. In the example of Figure 1 this value would
be 3 out of 4 or 75%. This percentage provides a coarse
measure of popularity that is meaningful for servers not ac-
cessed frequently. However, it is less meaningful for servers
that are looked up frequently over the duration of the ATTL.
This would be the case for popular servers or servers with
large ATTLs.

The second type of analysis is to focus on the gap when
the cache is empty. These gaps can be computed by using
the TTL returned when the cache is poked and the ATTL
to determine when the cache is filled with a record and when
the record expires. For example, the TTL returned for Poke
2 at time 6m is one minute indicating that the record entered
the cache at time 2m and will expire at time 7m. Similar
calculations for Poke 3 indicate the record reenters the cache
at time 7Tm30s for a cache gap of 30 seconds. Similarly, the
second cache gap in Figure 1 is 12 seconds. In cases where
a subsequent poke successfully returns, but does not find a
cached record then the gap calculation extends to the next
poke. In the case that a poke returns an error or times
out then the gap calculation is reset until the record is once
again found in the cache.

Intuitively the smaller the cache gap, the more frequently
that server is requested, but can we use the gap to infer
the request interval? It can be shown that if requests have
exponentially distributed interarrival times then measured
cache gaps also have the same distribution. This result leads
to the question of whether DNS requests exhibit an expo-
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nential distribution and in general how well these measured
cache gaps approximate the request intervals. In the follow-
ing section we compare our technique with a known DNS
request distribution.

4. COMPARISON OF TECHNIQUE WITH
KNOWN DNSREQUESTS

As a means to test whether DNS requests exhibit an ex-
ponential distribution and, more importantly, to understand
how well the distribution of measured cache gaps can be
used to infer the request interval, we obtained a log of DNS
requests made to the WPI DNS server (ns.wpi.edu) on our
campus. The log was for approximately 28 continuous hours
of mid-week activity during April 2003. This server is the
primary LDNS for campus as well as the primary ADNS
for the wpi.edu domain. We first filtered the log to only
consider local DNS requests from WPI clients for non-WPI
servers.

We applied our technique of sampling this known request
stream with the frequency of the ATTL for numerous servers
using the log data. Table 1 and Figure 2 show information
about the measured cache gap and the known DNS request
interval for three selected servers. Comparative results from
these servers are representative of results we found for other
servers. We first compare the results for www.google.com.
We see in Table 1 that this server uses an ATTL of 5 minutes
and that with this sample rate, a cache hit rate of over 92%
was found. The table also shows the median, mean and stan-
dard deviation of both the measured cache gaps and known
request intervals. The results show a larger mean and stan-
dard deviation for the cache gap, but comparable medians.
These results are reflected in the “gap” and “interval” Cu-
mulative Distribution Functions (CDFs) in Figure 2 where
we observe a clear correspondence between the distributions
of measured cache gaps and request intervals.

The next comparative results we examine are those for
www.yahoo.com. This server uses an ATTL of 30m and at
this sampling interval, the server name was found in the
cache each time. This server is distinguished in our com-
parative results because the gap and interval distributions
are quite different. Closer inspection of the known requests
for this server in the log show that at some points a few
clients make DNS requests at regular intervals just a few



Table 1: Cache Hit % and Comparison of Measured Cache Gap with Known DNS Request Interval for WPI

DNS Cache
Cache Gap (sec) Request Interval (sec)
Server ATTL | Hit % | Med Mean StDev | Med Mean StDev
www.google.com 5m 92.3 11.0 255 56.0 8.0 14.3 25.7
www.yahoo.com 30m 100 3.0 3.0 4.1 20.0 32.0 42.3
WWW.Cnn.com 5m 87.8 | 38.0 425 35.6 | 30.0 52.2 64.7
1 — . e While not exponentially distributed, the cache gap is
a reasonable estimate of the request interval for most
; servers, particularly for smaller values of the request
08| interval and cache gap.
i e Corners or discontinuities in the CDF of cache gaps
06 | reflect periodicity in the DNS request stream and indi-
| cate this methodology does not provide good estimates
] # of the true request interval. Fortunately, servers with
0.4 r 5 1 a strong periodicity in requests, such as what we saw
Y OOo"e_.-"" www.google.com.gap —— with www.yahoo.com, do not occur often in results we
? www.google.com.interval --—--*-— measure.
0.2 www.yahoo.com.gap %
b www.yahoo.com.interval e
‘ Www.cnn.com.gap ---=-- 5. POTENTIAL ISSUES
ot ‘ ‘ www.cnn.com.interval -+ - ) T
0 20 20 60 80 100 In addition to the issue of periodic DNS requests, there are
Seconds other potential issues with the technique. In the following
points we identify and address these issues.
Figure 2: Cumulative Distribution Functions for

Measured Cache Gap with Known DNS Request In-
terval for WPI DNS Cache

seconds beyond the sampling interval of 30 minutes. Over
time, particularly during periods of relatively low activity,
our pokes “synchronize” with these periodic DNS requests
and result in small measured cache gaps even though the
request intervals are larger. Applications using these pe-
riodic requests are problematic for the technique we pro-
pose and represent servers for which it is not appropriate.
Fortunately these servers can be identified by looking at
their cache gap CDF. In Figure 2 the CDF for cache gaps
of www.yahoo.com shows a sharp “corner” at just a few
seconds indicating strong periodicity in the underlying re-
quest interval. We found such corners or discontinuities in
the CDF for a few of the other servers we tested, such as
www.weather.com and www.dell.com, where clients gener-
ated periodic requests.

The final set of results in Table 1 and Figure 2 are shown
for the server www.cnn.com. These comparative results
again show a good correspondence between the cache gap
and request interval, despite the relatively small amount of
discontinuity in the CDF at 60 seconds. Closer examination
of the logs shows a short off-peak period where two clients
issued DNS requests at 10 minute intervals with six minutes
of offset resulting in the measured cache gaps.

In summarizing the comparative results between the mea-
sured cache gaps and known request intervals, we make the
following observations.

e The request interval distribution is generally not a true
exponential distribution.
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e One obvious potential issue with the approach is if the
LDNS does not retain the cached record for the life-
time assigned by the ADNS. In our experience with
our local WPI DNS server and other LDNSs, we have
observed that entries generally do stay for the entire
ATTL. In cases where the records do not, the prob-
lem can be handled in two ways. First, in the analysis
of the pokes, we can observe when this case occurs
because we compute a negative cache gap. For ex-
ample in Figure 1 if the record obtained at time 2m
is removed from the cache at time 6m15s (just after
Poke 2) then the request at time 6m30s will cause the
record to be retrieved again and our calculation for
the cache gap at Poke 3 will result in a negative cache
gap because the periods that the cache is full appear
to overlap. We discard these cases in our analysis and
show in Section 6 that they are usually not an issue.

The second way to detect premature flushing of records
from the cache is to poke at the LDNS more frequently
than the ATTL. These additional pokes provide no
additional information other than to monitor when a
record is flushed before its time. We do not use these
additional pokes in the results we show, but could do
so for LDNSs that are known to flush cached records
before the TTL expires.

e A related problem to premature flushing of cached
records is when a LDNS does not contain a DNS record
for a request and rather than receiving an authorita-
tive response to its recursive query, it receives a cached
non-authoritative response from an intermediate DNS
server. In previous work [22], we found this occurs
in 5-10% of DNS lookups. The implications are simi-
lar to the previous issue and we handle it in a similar



manner. It might be possible to distinguish between
non-authoritative responses from the LDNS and inter-
mediate servers via examination of the response time.
We successfully used this technique in [22], but in that
work we always communicated with the LDNS via a
local area network where in this work, the network
latencies to the LDNSs are larger and less consistent.

Time of day effect, where request intervals and mea-
sured cache gaps vary over the course of a day, is an-
other consideration. We found differences over the
course of a 24-hour day for all LDNSs in this study.
In general, the cache gaps were shorter during “peak”
times of each LDNS, but the tone of the results was
generally the same. All results reported in this work
are for 24-hour days.

Another issue is how to compare the frequency of ac-
cess for servers with different ATTLs. The cache gap
analysis is independent of the ATTL, but longer AT-
TLs allow fewer opportunities for sampling and hence
fewer observations of the cache gap. It is necessary to
find the least common time interval to compare cache
hit rates for two or more servers. For example, the hit
rates of one server with a 5m ATTL and another server
with a 1Th ATTL must be compared on an hourly basis.

The technique can be used to collect usage informa-
tion from any LDNS that accepts DNS queries from a
client. However, finding or gaining access to LDNSs for
an organization of interest may be an issue. In prac-
tice, while we were not able to gain access to all LDNSs
we tried, we were able to gain access to a variety of
LDNSs. More details on our approach for identifying
LDNSs is given in Section 6.

In the absence of additional information, it may not be
possible to know the population size or characteristics
of users served by a LDNS. We can infer character-
istics of the population when a LDNS can be traced
to a particular location, such as a university campus.
We can also infer relative population size by compar-
ing relative frequency of commonly used servers across
different LDNSs. We use this technique in Section 6.

In addition to knowing specific LDNSs to query, the
technique requires the server names of interest to be
known. These names may be obtained from documen-
tation, examining code or observing DNS queries for
the Internet application of interest.

A potential issue of tracking usage of many servers at a
frequent rate at a given LDNS is the potential percep-
tion of a denial-of-service (DOS) attack. While possi-
ble, the most frequent pokes we used for any server in
our study was 5 minutes with pokes for many servers
at a much less frequent rate. For about 50 servers
tested as part of this work, we generated on average
of approximately three DNS requests per minute. In
comparison, the WPI DNS server handles over 5000
requests per minute so DOS should not be an issue.
Also, in the course of doing this work, no alerts were
reported for the DNS traffic we generated.

The final potential issue of this approach is one of pri-
vacy. Just because a researcher has access to cache
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information of a LDNS does not necessarily mean that
the administrator of the LDNS is willing to share that
information with others. The privacy concerns of this
technique are appropriate to analyze, particularly when
the contents of a LDNS cache can be corroborated with
other user access information for a relatively small set
of users. For this work, we focus on the goal of iden-
tifying the relative popularity of Internet servers and
hence only identify the type of, but not the specific,
LDNSs used in our study.

6. IDENTIFICATION OF LOCAL DOMAIN
NAME SYSTEM SERVERS

In this section we describe the approach used to identify
the set of LDNSs for application of the methodology. Our
goal in identifying LDNSs was to find a number of such
servers serving different sets of users. We identified four
categories of LDNSs for study, with all of the LDNSs being
in the United States. International LDNSs could also be
found, but that was not a focus of this work. The follow-
ing identifies each of the four categories of LDNSs as well
as describes the approach we used in obtaining the specific
servers within each category.

1. Commercial sites. LDNSs in this category are all in
the .com DNS domain. These servers were found by
using the dig tool to obtain the ADNS for a num-
ber of companies (both big and small) and then using
directed DNS queries to determine if these authorita-
tive name servers also played the role of LDNS for the
company. We identified a DNS server as a LDNS if
it returned cached resource record information for our
queries. In some cases, the DNS server did not have
cached information—either because it is not a LDNS
or it refused our DNS query. Five LDNSs from both
well-known and lesser-known companies were selected
and identified as com1-5 in our results.

2. Educational sites. LDNSs for educational sites were
identified in a similar manner as for commercial sites
using the ADNSs of university sites as a starting point.
The selected LDNSs for this category, all from the .edu
DNS domain, are located at well-known universities.
Five servers, identified as edul-5, are used in our study.

3. Internet Service Providers (ISPs) serving commercial
companies. In looking for LDNSs of commercial sites,
we found a number of ADNSs for these sites being
ISPs from the .net DNS domain. In many cases these
ADNSs also provide the role of a LDNS. While these
ISPs may serve non-commercial customers they were
all identified in this category because they serve at
least one commercial site. Five of these servers, iden-
tified as ispcom1-5, are used in our study.

4. ISPs serving home customers. The LDNSs in this cat-
egory were found with a different approach than the
other categories. In this case we used published ad-
dresses for DNS servers of ISPs known to serve home
customers. We found these addresses from help in-
formation at the Web sites of the ISPs themselves as
well as from technical help information from sites such
as [16]. Five of these servers, all from the .net DNS



domain and identified as isphomel-5, are used in our
study.

To gauge the relative size of the user population for the
20 selected LDNSs, we examined the measured cache hit
rate and cache gap for the generally popular server name
www.google.com at each of these LDNSs over a one-week
period in April 2003. The results for all 20 servers are shown
in Table 2. For illustration, Figure 3 provides more detail
for the cache gap of the isphome servers with the respective
CDFs.

Table 2: Cache Hit % and Measured Cache Gap
(sec) of www.google.com for Selected Local DNS
Servers

LDNS Hit % | Med Mean StDev
coml 96.7 4.0 114 22.1
com?2 79.2 | 26.0 88.1 157.6
com3 80.5 | 25.0 729 116.3
com4 43.7 | 62.0 3783 938.6
comb 96.0 7.0 14.2 27.5
edul 904 | 12.0 32.6 68.6
edu2 90.0 | 10.0 335 76.2
edu3 96.7 5.0 10.9 19.1
edu4 96.8 4.0 19.2 45.1
edud 97.1 3.0 9.1 22.8
ispcom1 99.9 0.0 1.1 13.4
ispcom?2 93.5 8.0 21.1 36.3
ispcom3 98.8 2.0 4.5 7.7
ispcom4 93.0 9.0 23.1 37.8
ispcomb 97.9 4.0 6.9 12.2
isphomel | 99.3 2.0 3.2 4.5
isphome2 | 96.0 6.0 13.0 32.7
isphome3 | 99.0 1.0 3.4 11.3
isphome4 | 99.5 | 49.0 73.2 77.6
isphomed | 98.7 2.0 4.8 12.6

isphome3

isphome4 -8
isphome5 ---=--
0 1 1 1 1
0 20 40 60 80 100
Seconds
Figure 3: Cumulative Distribution Function for

Measured Cache Gap of www.google.com for Home
ISP LDNSs

The results show the most variability in relative frequency
within the five commercial sites with two of the servers han-
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dling more requests than the other three. The LDNSs for
the other categories all show frequent accesses with rela-
tively high cache hit rates (using a sampling period of 5
minutes corresponding to the ATTL) and small cache gaps.
The busiest LDNS is ispcom1 based both on these results
and other results we obtained throughout this study.

We also used these data to determine the prevalence of
negative cache gaps in our analysis, which, as described in
Section 5, occurs when a record is flushed from a LDNS
cache before it expires or the record does not enter the cache
with the ATTL for the record. For 17 out of the 20 LDNSs,
the calculation of negative cache gaps occurred in less than
1% of the calculations. For the com2 LDNS it occurred in
3% of the cases while it occurred in 7% of cases for edu4.
For the isphome4 LDNS it occurred in 40% of the cases
indicating a clear problem with prematurely expiring records
and the need for more frequent sampling to correct for it.
Because we did not introduce more frequent sampling, we
do not use results from any of these three LDNSs in the
results shown.

7. APPLICATION DOMAINS

The methodology can be applied to any Internet appli-
cation that uses distinguished server names and performs
DNS lookups on these names as part of application use.
The methodology is helpful in identifying whether an appli-
cation is used and if so then to provide data on the relative
frequency. This technique can be used to characterize the
usage patterns for a targeted community of users and point
to what Internet applications and content are appropriate
to use for characterization studies.

The technique works best when the DNS lookup of a
server name by an application infers meaning about the ap-
plication use. For example, the lookup of www.mysite.com
likely means that the Web site is being visited by a browser
or other Web client. Users of network game applications
first lookup the name of a game server when joining a game.
These lookups can be used to infer the use and relative pop-
ularity of Web servers as well as applications.

In this section we apply the technique to study usage pat-
terns for five sample applications. These applications are:

1. Popularity of Web Servers. An obvious application
is to determine the relative popularity of a set Web
servers. Published lists of popular Web sites are one
means to identify popular content [18, 17, 15], but the
methodology for determining these lists may not be
clear and these lists only include a small fraction of
Web sites on the Internet. For this sample study we
chose to track the relative popularity of a set of Web
search servers.

2. Web site traversal. An interesting problem for a given
Web site is to determine the links that are followed at a
site assuming that server logs are not available. This
problem arose in previous work by the authors [12].
For sites that use distinct server names for portions
of the Web site content, our technique can be used to
track relative request frequencies for these servers. In
this study we use the CNN Web site (www.cnn.com),
which employs many distinct server names for specific
types of content at the site.

3. Streaming content popularity. A related problem to



Table 3: Cache Hit % and Measured Cache Gap (sec) of Web Search Servers for Selected Local DNS Servers

Server ATTL | Hit % 1H Hit % | Med Mean StDev
LDNS: ispcoml

www.google.com 5m 99.9 100.0 0.0 1.1 13.4
search.msn.com 1h 100.0 100.0 1.0 3.9 8.3
www.altavista.com 5m 96.0 100.0 3.0 14.4 33.9
search.aol.com 5m 84.2 100.0 21.0 55.9 131.2
www.alltheweb.com 12h 100.0 - 22.5 268.2 763.0
altavista.com 5m 82.7 100.0 23.0 62.1 171.3
www.teoma.com 5m 16.3 85.0 847.0 1469.1 1955.6
teoma.com 5m 2.9 28.1 4905.0 8641.2 10821.5
LDNS: isphomel

www.google.com 5m 99.3 100.0 2.0 3.2 4.5
search.msn.com 1h 100.0 100.0 5.0 15.5 82.7
www.altavista.com 5m 89.1 100.0 17.0 38.2 63.3
search.aol.com 5m 64.8 100.0 76.5 163.5 272.7
altavista.com 5m 62.5 99.4 89.0 180.7 317.9
www.alltheweb.com 12h 100.0 - 188.0 1423.5 3811.4
www.teoma.com 5m 10.8 68.3 1289.0 2429.4 3397.9
teoma.com 5m 1.7 19.8 13125.5 15848.3 14337.8

determining what Web servers are used is to deter-
mine what streaming content available on the Internet
is used. In current work to study the characteristics
of audio and video streaming content available on the
Internet [11], the authors identify which servers store
streaming content, but need a means to determine the
extent to which it is being used. We apply our tech-
nique to a set of servers containing streaming content.

4. Network games. Network games are a popular Inter-
net application. We track the use of well-known game
servers for specific games to infer the usage patterns
of these games.

5. Grid computing. The contribution of excess comput-
ing capacity to a computational grid is another area
of interest. We track the lookups of data servers for
two well-known grid computations to infer the usage
patterns of contributions to these computing grids.

We gathered data for a set of servers in each of these do-
mains for approximately one-week periods in April and May
2003. While we gathered information from all 20 LDNSs de-
scribed in Section 6, we show results in this section from only
a few LDNSs—primarily from ispcoml and isphomel. We
justify this presentation approach because of space consid-
erations and because the focus of this work is application of
the technique, not the results obtained from it.

7.1 Popularity of Web Servers—Search En-
gines

We choose to test our technique on the popularity of Web
search engines because searching is important to many Web
users. To identify the list of search servers to track, we
largely drew from a list of major search engines [21]. The
list of six servers we tested along with their ATTL and any
notes about the server name are given below.

1. www.google.com, 5m. A Web request to google.com
causes a HTTP redirect to www.google.com.

2. www.alltheweb.com, 12h. A Web request to
alltheweb.com causes a HT'TP redirect to
www.alltheweb.com.

3. www.altavista.com, 5m. Lookups to altavista.com must
be tracked separately because separate DNS records
are maintained for each.

4. search.msn.com, 1h. This is the default search server
in TE.

5. search.aol.com, 5m. This is the search server for AOL.

6. www.teoma.com, 5m. This is a CNAME record to
teoma.ask.com. Lookups to teoma.com must be tracked
separately because separate DNS records are main-
tained for each.

The notes for these servers are important to understand
as the technique works best if we track the most “mean-
ingful” name in terms of DNS accesses. For example, in
the case of google, we track www.google.com because any
HTTP requests to google.com are redirected at the HTTP
level to www.google.com, which causes a DNS lookup of
www.google.com. We also found two search engines—altavista
and teoma—where neither HT'TP redirection nor DNS CNAME
records are used to redirect to a single server name. These
are the only two Web servers for which we found this situ-
ation to occur in our study and to be complete we tracked
lookups of both names.

In addition to knowing what server names to track, the
technique also requires an understanding of how these names
are used by an application—in this case a Web browser. Us-
ing packet traces while running the Internet Explorer (IE)
browser under a Windows operating system and Mozilla un-
der the Linux operating system, we observed that IE does
not issue a new DNS request if the elapsed time is less than
the TTL of the resource record. We did observe Moxzilla issu-
ing requests before the TTL expires, but not for every new
page access. In either case, the DNS requests that would



generate recursive requests beyond the local LDNS are the
same.

Table 3 shows results for the set of Web search servers
from two of the busier LDNSs—ispcom1 and isphomel. For
easier comparison the servers in the table are roughly or-
dered based on frequency of access using cache hit percent-
age and measured cache gap. The cache hit percentage for
each server is shown both at the sampling rate of the ATTL
and at a sampling rate of one hour. Note that with a 12h
ATTL, the www.alltheweb.com server is not included in the
one hour hit rate determination. Figures 4 and 5 show the
CDF's of the cache gap for the search servers (dropping the
less-used altavista.com and teoma.com servers).

The cache hit rate results show some delineation among
servers with a 5m ATTL, but that the top six servers are
all accessed on an hourly basis. Overall, for users of these
LDNSs, www.google.com is clearly the most used, followed
by search.msn.com and then www.altavista.com. The
search.aol.com and www.alltheweb.com servers show similar
results, although servers, such as www.alltheweb.com, with
larger ATTLs, allow fewer opportunities for sampling and
require longer testing periods to collect sufficient samples. It
is also more difficult to compare the cache hit rates of these
servers with other servers. For users of these LDNSs, the
www.teoma.com server is clearly the least frequently used
search server among the set in our study.
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Figure 4: Cumulative Distribution Function for

Measured Cache Gap of Web Search Servers on is-
pcoml

7.2 Traversal of aWeb Site—CNN

Another application of the technique is to determine the
relative frequency of use for Web sites employing a number
of servers to serve portions of the site content. One such
site is www.cnn.com where links and forms on the site home
page cause requests to a number of servers all under the
cnn.com domain. We studied the following eight servers
that we found on the CNN home page in April 2003.

1. cnn.com, 5m. A DNS request to www.cnn.com is a
CNAME record to cnn.com so that cnn.com must be re-
solved for requests to either server name.

2. search.cnn.com, 1h. This server handles form submis-
sions for search queries.
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3. gs.money.cnn.com, lh. This server handles form sub-
missions for obtaining stock quotes.

4. weather.cnn.com, 1h. This server handles form sub-
missions for obtaining weather information.

5. polls.cnn.com, 1h. This server handles form submis-
sions for taking an online poll.

6. sportsillustrated.cnn.com, 1h. This server handles sports
links and is a CNAME record to cnnsi.com.

7. money.cnn.com, 1h. This server handles business links
and is a CNAME record to cnnfn.com.

8. edition.cnn.com, 1h. This server handles the interna-
tional edition of cnn.com.

Results for these servers with the ispcoml and isphomel
LDNSs are shown in Table 4 with CDFs for these servers
given in Figures 6 and 7. The results show that content from
the cnn.com server is looked up relatively frequently by these
user populations, but is not as popular as www.google.com.
The sports and money servers are the most frequently used
other servers with the international edition server showing
comparable frequencies for the ispcoml LDNS, but not is-
phomel. The four servers used for forms have a lower fre-
quency. Note that as the frequency of use for a server be-
comes smaller the cache hit rate becomes more meaningful
for comparison while the statistics about the measured cache
gap become less useful.

7.3 Streaming Content Popularity

While the technique can be used to infer the relative pop-
ularity of content available from Web servers, it can also be
used to infer popularity of other types of content. In a re-
cent study [11], crawlers were used to find servers serving
streaming audio/video content for purposes of characteriz-
ing it. An issue with this type of approach is understanding
if and at what frequency this content is used.

We applied our technique to a sampling of the servers with
the most instances of streaming content found in crawler-
obtained data from [11]. We identified the following seven



Table 4: Cache Hit % and Measured Cache Gap (sec) of CNN Site Servers for Selected Local DNS Servers

Server ATTL [ Hit % 1HHit % | Med Mean StDev
LDNS: ispcom1

cnn.com 5m 98.6 100.0 1.0 4.4 19.1

sportsillustrated.cnn.com 1h 99.4 99.4 5.0 30.7 68.2

edition.cnn.com 1h 97.6 97.6 16.0 102.6 272.3
money.cnn.com 1h 98.8 98.8 18.0 56.8 287.3
weather.cnn.com 1h 89.8 89.8 127.0  400.7 750.3
polls.cnn.com 1h 87.4 87.4 212.0 528.7 877.2
@s.money.cnn.com 1h 69.0 69.0 297.5 1634.5 3800.5
search.cnn.com 1h 71.4 71.4 579.0 1508.1 2636.2
LDNS: isphomel

cnn.com 5m 94.8 100.0 8.0 17.3 31.3

sportsillustrated.cnn.com 1h 95.8 95.8 61.0 1789  333.6
money.cnn.com 1h 96.4 96.4 61.5 166.7  306.7
edition.cnn.com 1h 85.1 85.1 374.5 640.1 793.4
weather.cnn.com 1h 79.8 79.8 348.5 895.0 1589.7
polls.cnn.com 1h 83.3 83.3 362.0 735.3 1369.8
gs.money.cnn.com 1h 57.7 57.7 671.0 2619.2 4664.8
search.cnn.com 1h 63.7 63.7 935.0 2095.0 2924.8

Table 5: Cache Hit % and Measured Cache Gap (sec) of Streaming Servers for Selected Local DNS Servers

Server ATTL | Hit % 4H Hit % | Med Mean StDev
LDNS: edub

boss.streamos.com 10m 14.7 87.2 1209.0 3449.6 5253.6
mfile.akamai.com 2h 55.2 79.2 2588.0 6010.6 9511.7
wWww.iuma.com 5m 1.5 48.9 11249.0 16257.7  20114.5
www.connectlive.com 20m 1.7 19.1 83720.0 63623.8  33138.3
www.factoryschool.org 4h 2.1 2.1 0.0 0.0 0.0
real.scripps.com 1h 0.5 2.1 0.0 0.0 0.0
rslb.eonstreams.com 1h 0.0 0.0 0.0 0.0 0.0
LDNS: ispcoml

mfile.akamai.com 2h 100.0 100.0 16.0 45.1 88.3
boss.streamos.com 10m 81.8 100.0 43.0 133.1 335.6
wWww.iuma.com 5m 23.1 100.0 450.0 980.7 1843.7
rslb.eonstreams.com 1h 24.6 70.2 5379.0 10646.7  11326.8
real.scripps.com 1h 19.4 51.1 9044.5 15077.7  17724.3
www.connectlive.com 20m 3.0 29.8 22876.0 32831.3  40797.7
www.factoryschool.org 4h 4.2 4.2 107115.0 107115.0 0.0
LDNS: isphomel

boss.streamos.com 10m 50.7 100.0 258.0 583.9 939.6
mfile.akamai.com 2h 90.6 100.0 259.5 719.7 1140.1
www.iuma.com 5m 9.9 91.5 1295.0 2736.2 4227.6
real.scripps.com 1h 17.3 53.2 13346.0 17605.4  16333.3
rslb.eonstreams.com 1h 4.7 19.1 73699.0 78671.5  58160.3
www.connectlive.com 20m 1.4 14.9 66326.5 73452.0  70380.0
www.factoryschool.org 4h 4.2 4.2 310654.0 310654.0 0.0
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servers for study, although in the first three cases a DNS
request for one of these servers could be for a browser to ob-
tain HTML rather than streaming content. The remaining
four servers do not have a home page and we expect their
use to only be for serving streaming content.

1. www.connectlive.com, 20m.
. Www.iuma.com, 5m.
. www.factoryschool.org, 4h.

. boss.streamos.com, 10m.

2

3

4

5. mfile.akamai.com, 2h.

6. rslb.eonstreams.com, 1h.
7

. real.scripps.com, 1h.

Results for one of the educational sites plus two of the
ISPs are shown in Table 5. Because the cache hit rates are
relatively lower than previous applications we do not show
CDFs for the measured cache gaps. Note that we compare
the servers using the hit rate for sampling every 4 hours as
a common comparison interval.

The results show that the mfile.akamai.com and
boss.streamos.com servers have the most frequent access
across the three LDNSs. The www.factoryschool.org server
has almost no lookups indicating that content on this server
was rarely accessed by users of these LDNSs over the one
week period of our study. These results can help to focus the
content examined in characterization studies such as [11].

7.4 Network Games

Our next focus area was network games where we use the
lookup of game servers by applications as an indication that
games are being played. We studied usage of three game
servers:

1. useast.battle.net, 12h.
2. uswest.battle.net, 1h.
3. master.gamespy.com, 1lh.

The first two servers, located on each coast of the United
States, are used to serve users of games such as WarCraft
and StarCraft [1]. The last server is part of the GameSpy
network, which is responsible for games such as Counter-
Strike [8].

Results for these servers at selected LDNSs are shown in
Table 6. Surprisingly the two battle.net servers use dramat-
ically different ATTLs. Consequently the common compar-
ison interval for all servers is 12 hours. The results do not
show a clear distinction in relative popularity between the
servers. The preference of useast.battle.net by edu5 and is-
pcoml users confirms that both LDNSs are indeed located
on the east coast while the geographic balance for isphomel
users indicates the users are more geographically dispersed.

7.5 Grid Computing

We examined relative frequency of use for two better known
grid computing applications—SETI@home [19] and
distributed.net [6]. These applications execute as low prior-
ity processes or as screen savers on machines and allow in-
terested users to contribute CPU cycles to a computational
grid. We studied three servers to which computational re-
sults are reported.



Table 6: Cache Hit % and Measured Cache Gap (sec) of Network Game Servers for Selected Local DNS

Servers
Server ATTL [ Hit % 12H Hit % | Med Mean StDev
LDNS: edub
useast.battle.net 12h 92.9 92.9 921.5 3209.9 4867.3
uswest.battle.net 1h 14.5 76.9 14690.0 20347.9 23553.4
master.gamespy.com 1h 33.7 100.0 2316.0 6796.0 11792.3
LDNS: ispcoml
useast.battle.net 12h 100.0 100.0 11.0 27.4 38.6
uswest.battle.net 1h 91.6 100.0 102.0 317.3 576.3
master.gamespy.com 1h 98.2 100.0 12.0 54.2 163.4
LDNS: isphomel
useast.battle.net 12h 100.0 100.0 150.0 471.2 795.1
uswest.battle.net 1h 86.7 100.0 168.0 555.0 1488.1
master.gamespy.com 1h 87.3 100.0 150.5 531.5 1007.3

1. us.v27.distributed.net, 15m.
2. us.v29.distributed.net, 15m.

3. shserver2.ssl.berkeley.edu, 4h.

The first two are data servers for two different versions of
the distributed.net application [7]. The other server is the
data server used by SETI@home [10]. Table 7 shows results
for these three servers for the users of three LDNSs.

The results show that SETI@Qhome is generally more pop-
ular for these sets of users. These results, and others not
shown, indicate that different versions of distributed.net are
more popular at different LDNSs.

8. SUMMARY AND FUTURE WORK

This work introduces a novel methodology for inferring
the usage patterns for Internet applications by a group of
users. We use the information contained in the LDNS used
by these applications to lookup server names with the DNS
mechanism. While this methodology does not provide pre-
cise usage information as might be obtained from logs or
network packet traces, it can be applied using the DNS
mechanism without the difficulty of obtaining logs or traces
from an organization. The methodology can be used to col-
lect usage information from any LDNS that accepts DNS
queries allowing usage patterns for a populations of users to
be targeted based upon the LDNSs chosen to study.

‘We have described how the methodology works and shown
that it can provide coarse usage frequency using cache hits as
a metric as well as more precise usage information by using
measured cache gaps to approximate request intervals for
more frequently accessed servers. We show that the cache
gaps work to approximate request intervals using a log of
actual DNS requests and also identify situations where the
methodology does not work well. Problems occur when a
LDNS cache receives periodic requests for a server name,
which are indicated by discontinuities in the CDF of the
measured cache gaps for the name.

We go on to show how the methodology can be applied to
a number of application domains where the DNS lookup of
a particular server name implies information about the use
of an application. Keying on the frequency that the server
name appears in the LDNS cache, we can identify whether
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an application is being used and if so then to understand
its relative popularity. We infer the relative popularity of
servers used for Web searching, handling content requests
at the CNN web site, repositories of streaming content, net-
work games and grid computing.

The work raises a number of directions for future work.
Clearly using the methodology for other application domains
is of interest. Possible uses that we can immediately iden-
tify are to track the use of instant messaging (IM) servers
to determine the relative popularity of different IM services.
The use of peer-to-peer networks could be tracked if they
use well-known “super nodes” that require a DNS lookup
when new peers join. Many Content Distribution Networks
(CDNs) use DNS to direct clients to different servers allow-
ing the frequency of use for these servers to be tracked. The
presence of DNS MX records in the cache can be used to track
the popularity of mail servers. In general, the relative pop-
ularity of any Internet application that uses distinguished
server names can be tracked. The methodology can also be
used for longitudinal study on changes in request patterns.

Another direction for future work is to refine and better
understand the methodology. We plan to do more extensive
testing on the methodology with known LDNS request logs.
We could also use known ADNS request logs to determine
LDNSs in the Internet. We also plan to investigate whether
it is possible to compensate for periodicity in the DNS re-
quests so results exhibiting discontinuities in the cache gap
CDFs can be used. We also plan to better explore the time-
of-day effect and focus on “peak-time” performance, which
may make sense for the LDNS of a single site, but may not
for LDNSs serving clients in a range of time zones. Finally,
we need to adapt the methodology if the ATTL of a server
name changes.

A direction of work is to explore how other types of caches
can be used to infer popularity. For example, Web caches
contain objects that could be considered popular, although
determining the content of the objects may be difficult unless
the cache has a mechanism to reveal its contents. Normally
responses to Web requests do not indicate if an object was
served from a cache nor do they provide information on how
long an object has resided in the cache. It may be possible
to infer cache content based on retrieval latency if there is
a big difference between latency of cached and non-cached
retrievals as we did in [22] for determining the source of



Table 7: Cache Hit % and Measured Cache Gap (sec) of Grid Computing Servers for Selected Local DNS

Servers
Server ATTL [ Hit % 4H Hit % [ Med  Mean  StDev
LDNS: edub
us.v27.distributed.net 15m 9.1 82.9 7262.0 7856.4 6913.5
us.v29.distributed.net 15m 0.6 4.9 0.0 0.0 0.0
shserver2.ssl.berkeley.edu 4h 97.6 97.6 240.0 299.1  266.3
LDNS: ispcoml
us.v27.distributed.net 15m 19.9 100.0 2806.0 3511.9 3027.2
us.v29.distributed.net 15m 25.0 92.7 2202.0 3866.9 5233.6
shserver2.ssl.berkeley.edu 4h 97.6 97.6 87.0 279.4  1098.6
LDNS: isphomel
us.v27.distributed.net 15m 25.1 90.2 750.0 2496.5 4336.4
us.v29.distributed.net 15m 47.0 100.0 119.0 1336.8 3083.8
shserver2.ssl.berkeley.edu 4h 95.2 95.2 268.5 882.3  1947.2

non-authoritative DNS records.

A final direction that needs more exploration is the trade-
off in using caches to identify popular content while pro-
tecting privacy concerns for users. Given that any user can
send a query to a LDNS cache, there is certainly the poten-
tial that a user could corroborate DNS cache contents with
information on which users are active to make inferences
about what these users are doing. While access control lists
(ACLs) for LDNSs can prevent access to these LDNSs by
“outside” users, ACLs cannot be used to prevent tracking
of the LDNS cache by the legitimate users of the LDNS.
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