
Directory Services
Justin Groce

Systems Programming

jbgroce21@tnech.edu

ABSTRACT

Directory Service (DS) is a service that allows devices to “talk” to

each other. It does this by keeping a database that maps names of

resources of a network to their address. Users can them connect to

the DS servers to retrieve information. The servers can also store

information deemed useful for the users or applications that will

be connecting to the database. DS is based on a standard called

X.500.

DS also defines the protocol in which a user or application is to

talk to the server. This connection with the server could be to find

the address associated with a resource attached to the network. To

get this address, the user or application needs only to know the

name of the resource.

The fact that the user needs only to know the name of a resource

greatly eases the process of connecting to a resource for a human

user, as humans use names to talk to and about people and places

on a daily basis.

Keywords

DS, Directory Services, Network.

1. What is Directory Services
Directory Services (DS) is a service used to effectively and

efficiently manage resources within a network. That network can

be very small or global. Any network needs DS. DS can be

thought of as a database of resources contained in a specified

network. Those resources are objects such as printers, servers,

network users, and applications [1].

DS serves as a map of the names of each resource to its individual

address. The purpose of this is to make the process of finding a

resource simple for users. Users, as humans, use names when

referring to people or places. In the same way, users find it easier

to refer to the objects in the network by their names. However, not

only users make use of DS. Applications are also able to use DS

to retrieve addressees. One example of an application that can use

the database in DS is an email application. When a user sends an

email, that user addresses the email to the name of the recipient.

The application then uses the DS database to get the network

address by knowing the name [1].

By X.500 guidelines, a global DS can be easily broken up into

smaller and smaller networks. Starting at a very small network,

each DS is responsible for its local names and addresses. Then

each local DS can get combined into a lager DS until every

network is connected. This keeps things running quickly and

efficiently [2].

Another helpful task that DS provides for a network is to define a

name space for that network. A name space is a group of rules that

defines how the resources in a network are to be named within the

name space. A name space is needed to ensure that all the names

of the resources are unique and that there is a one-to-one mapping

of resources to names. The DS serves as a name space by keeping

a map of each name to the corresponding network address. This

allows for the network address of a resource to change while its

name remains the same within the DS. This is accomplished by

changing the address once in the DS database. The DS will then

give out the new address when the user looks up the old name [1].

If networks did not have DS, the user would have to know the

network address of every resource they wanted to connect to. This

is highly unreasonable, especially within a very large network.

The DS database can also store information useful to users such as

network settings and configurations. In this way, DS has become a

distributed global database of sorts.

2. Implementation
By applying the X.500 standard, a specific protocol is followed

for applications to connect to the Directory Service (DS) database.

This protocol is called Directory Access Protocol (DAP) [4].

A modification to DAP to simplify the process is the Lightweight

Directory Access Protocol (LDAP) [3]. For the remainder of the

section, LDAP will be discussed. This is because LDAP is

basically a simplified version of DAP. Therefore, LDAP follows

much the same principles that DAP follows.

LDAP takes out much of the protocol in DAP that is considered

to be unessential to the core needs of a DS. LDAP gives users or

applications a way to know how to access the addresses they need

to connect to resources on a network they are directly or indirectly

connected to. When designers implemented LDAP, they created

separated servers that would index all the resources they knew

about individually. They also know how to find the requested

information if it is not locally stored. LDAP doesn’t tell users how

to design their systems in order to use LDAP. Instead, LDAP is

simple a language in which applications know how to get

information from LDAP enabled servers. This concept also works

with server to server applications [3].

One possible way of getting information from an LDAP server is

requesting a specific string. The server then filters its data with the

string to find possible data of interest to the requester [3].

Of course with security being of the utmost importance in a

system that gives out addresses of resources, LDAP provides

security by using permissions. These permissions are a way for the

administrator of a particular LDAP server to set up who can and

who cannot gain access to the server. LDAP administrators can

also choose to keep some records hidden from users or

applications that connect to the server. This is done by setting the

data as private. Much like programming languages can set

variables to private to restrict other classes from accessing and

changing information, private data in LDAP servers can only be

accessed by those chosen by the administrator. However, making

data private is an optional feature in LDAP [3].

LDAP is set up to hold data types chosen from a base list of data

types. This is called a schema. When a schema is chosen,

attributes are given to the data type [3]. For example, a possible

data type entry would be “student.” The student data type could

have as many attributes as the administrator wanted to keep track

of. These attributes could be things such as “name,” “grade,”

“gradePointAvg,” and “schoolName.” The attributes of a data

types are given back to the user or application that request

information about the data type.

Information can be retrieved from an LDAP server using a variety

of different methods. As long as the client used the LDAP

language, it can connect and receive information. Some common

languages used to implement an LDAP client are python and

ruby. Sample code can be found using a quick Google search.

The important thing to remember is the “bind” call. This is what

allows access to the server.

A simple example in python is as follows.

3. Conclusion
Directory Service (DS) has become one of the best and largest

distributed global databases. By implementing the Directory

Access Protocol (DAP) or the smaller Lightweight Directory

Access Protocol (LDAP), DS maintains data about resources

within networks efficiently.

DS allows humans to use applications or to connect to resources

in any network they are connected to with the ease of using

names. Humans are already used to referring to objects by their

names. Many go as far as naming things such as their cars or their

lucky bowling ball. Therefore, when using a computer, humans

would much rather connect to “my printer” than 154.234.0.128.

DS provides this service for the user. Applications also are able to

take advantage of using DS servers to connect to the database

holding the information they need.

4. REFERENCES
[1] McLain, Nancy. "What Is a Directory Service?" (Nov 2010)

http://support.novell.com/techcenter/articles/anp20000501.ht

ml

[2] Weider, C. and J. Reynolds. "Executive Introduction to

Directory Services Using the X.500 Protocol" (Nov 2010)

http://delivery.acm.org.ezproxy.tntech.edu/10.1145/rfc_fullte

xt/RFC1308/rfc1308.txt?key1=RFC1308&key2=691582982

1&coll=DL&dl=ACM&CFID=110046732&CFTOKEN=153

09991

[3] "What is LDAP?" (Nov 2010)

http://www.gracion.com/server/whatldap.html

[4] "X.500 Overview" (Nov 2010)

http://download.oracle.com/javase/jndi/tutorial/ldap/models/

x500.html

