
File Systems
Timothy Myers
Tennessee Tech

344 East 12th Street Apt. 4

Cookeville, TN 38501

931-206-2255

temyers240@gmail.com

ABSTRACT
In this paper I will try to give a brief overview of a few of the
major file systems that may blur the line between file storage and
file delivery in some cases. These range from the NFS which is
primarily responsible for allowing the use of a native file system
on another computer, to the impressively designed Google File
System which manages the many, many terabytes of storage
needed by Google. Like all file systems, they must keep track of
how to store break up and store the abstraction we call files into
pieces of binary data and to be able to retrieve those pieces again
so we humans can use them. One of the reasons that these file
systems are so different from the ones seen normally on storage
devices is the fact that most of the file systems discussed here are
used in a distributed computing environment, where many
computers are accessing the same information, possibly
simultaneously.

Keywords
File Systems, Google File System, Andrew File System, Network
File System, ZFS.

1. INTRODUCTION

Out of the many things that a computer might find odd about a
human, one would be our fascination with names, and another
would probably be our desire for things to be in order, whether
that be in alphabetical or chronological or otherwise. File
Systems in general were created to help bridge the fundamental
gap between humans and computers. They allow for a possibly
large number of chunks of data strewn throughout the storage
area of the computer to be seen as a human as a linear list of
information with an actual name, able to be remembered by a
person. Out of systems being discussed, the Network File System
(NFS) is probably the most unusual, as it does not actually keep
track of bytes of data on disk itself, instead the NFS is a
protocol[] which enables a client machine to interact with a
native file system on a server machine. The other file systems on
the list, the Google File System (GFS), the Andrew File System
(AFS), and the Zettabyte File System (ZFS), all of which have
the capabilities of a local file system, such as Ext(2|3|4), NTFS,
or FAT, as well as having the ability to be used in a distributed
environment, for example a college, where students would like to
be able to access their working files from as many places as
possible. In fact that environment is where the AFS began[].
While this makes these file systems very useful in certain
situations, the overhead involved in network access and
availability limit their use for everyday users.

2. Google File System
I do not know and cannot pretend to know the sheer amount of
information that the Google traffics in everyday, but even if they
only retained a tiny fraction of the information available to be
found on Google in the form of cached search results and other
data, their need for storage space is enormous. Both because of
the amount of information and because of the nature of the very
broadly based customer base that Google is serving, Google
created it's own file system which was designed to deal with
some of the unique problems that arise in the situation that
Google has placed themselves, in terms of availability,
responsiveness, and concurrency[].

One of the big realizations that Google had in terms of data
availability was the realization that hardware failure is more than
an incident, and more even than a fact of life. Namely, they
realized that hardware failure is happening right now to their
systems and especially their storage systems. To help with this
the GFS uses redundancy in its data handling. The GFS stores
files as fixed sized chunks on chunkservers, whose job is to store
these chunks of data, but each chunk is replicated on to multiple
different chunkservers, in different server racks even[]. The
number of redundant copies is three by default, but can be
changed, usually upward, if needed for a specific set of chunks.

As far as responsiveness is concerned, the convention is to have
one master server per GFS cluster, and possibly 1000 or more
chunkservers per cluster[]. The master holds all file metadata
and also has all of the knowledge concerning what files are
comprised of what chunks, and chunkservers have those
chunks[]. In a situation like a large server, the master could
become a large bottleneck if all reads and writes are done
through the master. So Google has created their file system such
that when a master server is contacted about a file, it replies with
the correct chunkserver and chunk, so the client can interact
directly with the chunkserver directly[], thus cutting some
network traffic overhead and keeping the information more
available to clients.

Upon analyzing the types of operations done on the data held by
Google, the designers of the GFS realized that the vast majority
of writes done to files were appending data to the end of files and
very little was actually writing in a random access fashion[]. To
compound the act of writing to files in the GFS is the fact that a
particular cluster of the GFS may have literally thousands of
clients interacting with the cluster simultaneously. Because of
this the GFS has an operation called record append. This
operation is guaranteed to be atomic within the GFS itself[]. This
allows for multiple clients to append data to a record (seemingly)
at the same time, without the client needing much in the way of
synchronicity.

One odd thing about the chunk size for the GFS is the large size
of 64 MB[], which is much larger than the size for file pieces on
other file systems. However, when it is seen that Google
commonly deals with multi-GB files[], this chunk size becomes
more reasonable. Another possible advantage of the large chunk
size is the likelihood that any writing or reading that would need
to be done would all happen within one singe chunk, and would
not require multiple requests to the master server.

3. Andrew File System
The Andrew File Search (AFS) is a file system that was designed
at Carnegie Mellon University as part of a campus wide initiative
to provide a distributed computing environment. The AFS was
included in an attempt to provide universal access to personal
files by students, faculty, and staff[]. One thing that makes this
an interesting contrast from the GFS is that while both were
designed with a specific issue in mind. However, while the GFS
was designed for a corporation to use over its enormous
distributed network, the AFS was designed for use with the
specific environment of a university, and in [] it is revealed that
several possible shortcomings in AFS for very large systems were
simply worked around because of the smaller collegiate setting. I
hope to go ever a few of the very interesting features of the AFS
here.

One of the most powerful aspects of the AFS is the access control
lists (ACLs) that the file system was designed to implement.
Once the file server authenticates the user trying to access files,
that user is given a set of access privileges, in addition to the
standard unix read, write, and execute permissions on files.
These access controls include[]:

reading any file in the current directory

writing to any file in the current directory

inserting new files in the current directory

deleting files from the current directory

looking up files in the current directory

locking files in the current directory

being able to change the access control lists

These, along with the standard unix permissions allow for rather
fine grain control on what the users are capable of doing with
their files and in particular to the server.

Another interesting feature of the AFS is the fact that it does only
operates on whole files. Most file systems split files up for
storage and only transfers sections of files when access is
required, but the AFS transfers the entire file to the client when
the file is requested. The client then works on the local copy kept
on the local machine[]. When the file is later closed, AFS
transfers the entire file back to the file server which then updates
the copy of the file on the server. These files are also cached on
the client machine as well, allowing the AFS to participate in
much less network traffic[].

The AFS also has a concept called Logical Volumes. From []:

“A typical logical volume would be a single user's files, or a
particular release of the system binary files.”

While a user would not generally be aware of the logical volume
made up of the files in his home directory, the person
administrating the file server would use that logical volume to do
things such as making a backup, or cloning, those files[]. This
could also be used for distributing a new software release by

cloning the logical volume with the releases binaries[]. These
logical volumes can even be grouped together with “mount
points” which link one part of the AFS to another in much the
same way as unix allows for a separate file system to be grafted
into the directory tree.

4. Zettabyte File System

The Zettabyte File System (ZFS) is a file system that was
developed by the former Sun Microsystems, and was first seen in
their Solaris operating system. It's community proclaims that the
design of ZFS has removed 20 years of assumptions that are no
longer valid concerning file systems[], and while I cannot verify
that statement by any means, I will say that the list of features in
ZFS are quite impressive and noteworthy. It has advancements
that are not seen in other file systems, such as internal support
for volume management, constant time snapshots, and even
constant data error discovery and even data error recovery built
into the file system itself. Here I hope to provide an adequate
view on some of these revolutionary features.

One of the new control mechanisms that administrators have over
the actual block devices making up the ZFS is a construct called
a pool. One of these pools “sits” on top of possibly many local
block devices and accept instructions for them[]. As an example,
the administrator would create a pool by assigning block devices
to the pool, and then he would tell the pool to create directories
and export them onto the systems directory tree. The software of
the pool actually places the files on the individual disks and can
even set quotas or allow for space reservations on individual
directories[]. Set up correctly, these pools can create the same
affect as almost all versions of RAID, without RAID software,
and done entirely within the ZFS[].

The ZFS does seem to carry a large amount of meta-data, but due
to this it is able to create a very large amount of read only data
snapshots in constant time with respect to the size of the file
system[] or so it claims. The system it uses to accomplish this
feat is the fact that each block of data in the ZFS is timestamped
with the time of it's creation. This allows for one traversal of the
file system tree to find all of the files created at or before a
certain point in time, which is the snapshot[]. While this is a very
impressive system, I am still skeptical of the advertised constant
time snapshots.

The ZFS also performs a copy-on-write for each bit of data
written into the file system[]. This seems to usually to be a copy
to another physical device, but not necessarily need to be so. This
copy-on-write facility is combined with another feature to
provide the assumption of correct data and even data healing in
case of an error. This other feature is the checksumming of all
blocks of data written to the file system[]. Because, of this
system, and the top level control of the pool, bad data, that is
data for which the checksums do not match is not given to the
requesting application[]. No only that but when a bad block is
encountered, the pool will find a good copy of the bad block, give
the good block to the application, and then will use the good
block to repair any bad blocks encountered in the proccess.

5. Network File System

The Network File System (NFS) is quite different from the other
file systems in that it does not actually play with where data goes
onto a physical disk. The NFS is a protocol that allows for a
client computer to use the native file system on a NFS server like

it is local to the client machine. It is accompanied by software on
both the server and client machines. This software is necessary to
turn local file management calls on the client into Remote
Procedure Calls (RPS) that are sent across the network to the
server which translates the RPC into the specific command
required for the local file system being shared on the server
machine[]. In this way even file systems we have already
discussed, such as ZFS[], can be accessed using NFS.

The NFS is currently in version 4. Version 4 of NFS added
several new features into the mix. One of the small changes is
now the file handles used to communicate between the client and
server are encoded in 8 bit unicode (UTF-8) as an attempt to
handle some internationalization[]. However, one of the larger
changes are new operations, a couple of which are called OPEN
and CLOSE. The OPEN operation is especially interesting, one
because it encapsulates several individual operations needed in
previous versions of NFS[], but also because it introduces state to
the NFS protocol. Version 3 and earlier of NFS were stateless
protocols which meant that no special information was retained
about each client by the server, which makes recovering from an
error or power outage simple and quick. However, the OPEN
operation causes stateful information to be kept about a client
that has opened a file and which then has either a read delegation
or a write delegation from the server to mandate how that client
can treat that file. This state information is discarded when the
CLOSE operation is run and the delegations given to the client
are revoked[].

Also in contrast to earlier versions of the protocol is the ability of
NFS to use access list controls (ACLs). Much like the ones
mentioned in the discussion of the AFS, these allow for the users
accessing files through the clients to be controlled in their file
modification[]. This is especially important when the two local
file system which are interacting through NFS do not share the
same security model, such as is the case with the ext family of
file systems and the NT File System.

6. CONCLUSION
The file systems of the world exist to help we humans to find
access information in a way meaningful to us, even when the

words we read are actuality bits strewn about a storage device.
These systems started out rather primitively, and the commonly
used File Allocation Table (FAT) is a rather primitive system,
and as we have seen here the idea of what features can and
should be provided have grown immensely. Fortunately, not only
have the ideas grown, but also the implementation to match the
thrilling ideas. As wonderful as it would be just to stay where we
are technologically, and play with the great implementations
before us, we are facing a world of great change. Like always,
our technology will need to grow to meet that change, and I for
one, look forward to what the future holds.

7. REFERENCES

[1] S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C.
Beame, M. Eisler, D. Noveck “Network File System (NFS)
version 4 Protocol" RFC 3530, April 2003. [Online].
Available: http://www.faqs.org/rfcs/rfc 3530 .html

[2] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung.
2003. The Google file system. In Proceedings of the
nineteenth ACM symposium on Operating systems
principles (SOSP '03). ACM, New York, NY, USA, 29-43.
DOI=10.1145/945445.945450
http://doi.acm.org/10.1145/945445.945450

[3] Howard, J.H. Feb. 1988. An Overview of the Andrew File
System. In Proceedings of the USENIX Winter Technical
Conference. Dallas, TX

[4] NFS Overview Retrieved November 17, 2010 from A
Performance Comparison of NFS and iSCSI
for IP-Networked Storage
http://www.usenix.org/events/fast04/tech/full_papers/radkov
/radkov_html/node3.html

[5] Jeff Bonwick, Bill Moore. ZFS The Last Word in File
Systems. From OpenSolaris ZFS Community Group
http://hub.opensolaris.org/bin/view/Community+Group+zfs/
docs/zflast.pdf

http://www.faqs.org/rfcs/rfc3530.html
http://hub.opensolaris.org/bin/view/Community+Group+zfs/docs/zflast.pdf
http://hub.opensolaris.org/bin/view/Community+Group+zfs/docs/zflast.pdf
http://www.usenix.org/events/fast04/tech/full_papers/radkov/radkov_html/node3.html
http://www.usenix.org/events/fast04/tech/full_papers/radkov/radkov_html/node3.html

	1. INTRODUCTION
	2. Google File System
	3. Andrew File System
	4. Zettabyte File System
	5. Network File System
	6. CONCLUSION
	7. REFERENCES

