Secure and Flexible Certificate Access in WS-Security
through LDAP Component Matching

Sang Seok Lim
IBM Watson Research Center
P.O. Box 218
Yorktown Heights, NY 10598

slim@us.ibm.com

ABSTRACT

As an integral part of the Web Services Security (WS-Securi
ty), directory services are used to store and access X.509 cer-
tificates. Lightweight Directory Access Protocol (LDAP) is
the predominant directory access protocol for the Internet,
and hence for the Web services. Values of LDAP attribute
and assertion value syntaxes, though defined using ASN.1,
are encoded in simple octet string formats which generally
do not preserve the complete structure of the abstract val-
ues. As a result, LDAP matching rules for certificates need
to be provided in a certificate-syntax specific way, while
X.500 matching rules can be constructed from structured
ASN.1 syntax definition. Moreover, LDAP has traditionally
lacked the capability to make assertions against components
of values of complex syntaxes such as X.509 certificates. The
WS-Security needs to be able to locate a target X.509 cer-
tificate by matching against arbitrary certificate components
in its security token references. Therefore, WS-Security re-
quires the directory server to be prepared with all the possi-
ble matching functions for maximum flexibility. This is very
cumbersome due to the lack of ASN.1 awareness in LDAP
server implementations. This led to development of reme-
dies such as the recently proposed Certificate Parsing Server
(XPS). XPS extracts relevant components of the certificate
and stores them in separate and searchable attributes. Due
to the significant downside of these remedies, we decided
to seek after an ASN.1 based Component Matching alterna-
tive in an attempt to make an LDAP directory server ASN.1
aware. With Component Matching and ASN.1 awareness,
LDAP can provide WS-Security with various matching rules
flexibly. In this paper, we describe our implementation of
the Component Matching and ASN.1 awareness in OpenL-
DAP Software. This paper will also describe the use of the
Component Matching technology in various security com-
ponents of Web Services, especially in the context of WS-
Security and XKMS. The experimental results show that
flexible and secure certificate access can be accomplished

ACM Workshop on Secure Web ServioBstober 29,2004, Fairfax VA,

USA. Copyright 2004 ACM 1-58113-973-X/04/001($5.00.

87

Jong Hyuk Choi
IBM Watson Research Center
P.O. Box 218
Yorktown Heights, NY 10598

jongchoi@us.ibm.com

Kurt D. Zeilenga
IBM Linux Technology Center
Redwood City, CA 94105

zeilenga@us.ibm.com

without sacrificing performance and manageability.

Categories and Subject Descriptors
H.3.5 [Information Storage and Retrieval]: Online In-
formation Services-Web-based services; C.5.5 [Computer
System Implementation]: Metrics—Servers

General Terms
Security, Design

Keywords
PKI, X.509 Certificate, Certificate Repository, Component
Matching, LDAP

1. INTRODUCTION

Public Key Infrastructure (PKI) [6] is an integral part of the
WS-Security specification [17] which provides an application-
layer security framework for Web services by including se-
curity information in SOAP (Simple Object Access Pro-
tocol) [1] messages. Portions of a SOAP message can be
signed in order to ensure integrity and can be encrypted to
ensure confidentiality. Certificate Authority (CA) provides
the most universal form of the Security Token Service to
both Web service providers and requesters. The use of PKI
ensures the authenticity of the security tokens themselves.
The public key of a Web services entity is used to validate
the integrity and authenticity of SOAP messages which were
established by the corresponding private key and to encrypt
the contents of the SOAP messages.

X.509 certificates [4] are often managed in the directory
and are accessed through standard directory access proto-
cols such as X.500 [11] Directory Access Protocol (DAP) [7]
and Lightweight Directory Access Protocol (LDAP) [5]. In
order to embed an X.509 certificate as a security token in
a SOAP message, a Web service requester needs to retrieve
the X.509 certificate from a CA. Alternatively, if the Web
service requester includes a certificate URI as a reference to
the security token, it is a Web service provider who retrieves
the certificate from the CA. Even when the certificate is
embedded in the SOAP message, the Web service providers
may need to contact the certificate repository in order to
verify whether the certificate has been revoked by retrieving
a Certificate Revocation List (CRL).

LDAP is predominantly being used as the directory access
protocol for the Internet. Compared to X.500 Directory

Access Protocol, LDAP renders lightweight directory service
by providing string-based encodings of names and attribute
values (hence of assertion values), simple protocol encoding,
direct mapping onto TCP/IP, and the reduced number of
operations. However, these simplifications come at a price:
LDAP generally does not preserve the complete structure
of abstract values and the protocol and its implementations
are unable to harness the full power of the underlying ASN.1
data definitions. Due to the use of specialized string-based
encodings for each syntax, adding support for new syntaxes
and matching rules requires new development efforts. DAP
avoids these problems by the use of ASN.1 (Abstract Syntax
Notation One) [9] encoding rules, in particular the Basic
Encoding Rules [8].

Though these limitations were not viewed as a significant
problem during LDAP’s early years, it is clear that a num-
ber of directory applications, such as PKI, are significantly
hampered by these limitations. For instance, in PKI, a cer-
tificate needs to be located based upon the contents of its
components, such as serialNumber, issuer, key identifiers,
and subjectAltName [10]. LDAP search operations do not
understand the ASN.1 type of the certificate attribute and
the assertion as defined in [10], because attributes and asser-
tions in LDAP are encoded in an octet string with syntax
specific encoding rules. Not only would it require excep-
tional effort to support matching rules such as certificateM-
atch and certificateExactMatch as defined in [10], that effort
would have to be repeated for each matching rule introduced
to match on a particular component (or set of components)
of a certificate. Because of the amount of effort each server
vendor must undertake to support each new rule, few new
rules have been introduced to LDAP since inception. Ap-
plications had to make due with existing rules.

Foreseeing the need to be able to add new syntaxes and
matching rules without requiring recoding of server imple-
mentations, the directory community engineered a number
of extensions to LDAP to address these limitations. The
Generic String Encoding Rules (GSER) [14] was introduced
and is now used in describing and implementing new LDAP
string encodings. GSER produces human readable UTF-
8 [22] encoded Unicode [19] character strings and supports
reuse of existing LDAP string encodings. The Component
Matching [15] mechanism was also introduced to allow LDAP
matching rules to be defined in terms of ASN.1. Imple-
mentations may use automated systems to (statically and
dynamically) value parsing and matching functions. Addi-
tionally, Component Matching also introduces rules which
allow arbitrary assertions to be matched against selected
component values of complex data types such as certificates.
For example, the Component Matching enables matching
against the selected components of a certificate without the
need to define a specific matching rule or requiring custom
codes to implement that matching rules for the certificate
attributes.

Though the directory community saw GSER and Compo-
nent Matching as an eloquent solution to LDAP syntax and
matching rule limitations, there was some concerns, as most
LDAP server implementations were not ASN.1 aware, that
its adoption would be slow. To fulfill immediate needs of
PKI applications, another solution based upon component

88

extraction (or “data de-aggregation”) was proposed and im-
plemented in Certificate Parsing Server (XPS) [2]. While
some viewed this as being more pragmatic, as it shifted sig-
nificant complexity from the server to the client and intro-
duced a number of security and management issues, it is con-
sidered by many to be not a workable solution for PKI appli-
cations (and certainly not a workable general solution to the
component matching problem). In the spring of 2004, IBM
undertook an engineering effort to provide ASN.1 awareness,
GSER, and component matching support in the OpenLDAP
Project’s Standalone LDAP Daemon (slapd) (the directory
server component of OpenLDAP Software). We started from
implementing ASN.1 awareness in the server by providing an
automatic path to generate encoders and decoders for BER,
DER [8], and GSER from given ASN.1 data type defini-
tions. In addition, this ASN.1 infrastructure automatically
generates the component extraction and matching routines
for the individual components of an attribute type. The
search filter functions were modified to support Component-
Filter, ComponentAssertion, and ComponentReference. As
a result, it becomes possible to support complex matching
such as X.509 certificateMatch with a CertificateAssertion
syntax without manually defining syntax specific encodings
and matching routines.

We show an example of the flexible reference method with an
extension to <ds:X509Data> named, GenericCertificateRef-
erence which is designed after the certificateMatch of the
X.509 recommendation. Defining GenericCertificateRefer-
ence was easy because the Component Matching infrastruc-
ture could automatically generate the corresponding certifi-
cateMatch matching rules from the ASN.1 type specifica-
tion. Web services can also use Component Matching in
a URI reference of Security Token Reference by specifying
the componentFilterMatch matching rule as the extended
matching rule in the LDAP URI. Component Matching pro-
vides XKMS with the interfaces to PKI, allowing it to lo-
cate and validate a certificate flexibly. With the Component
Matching enabled LDAP server as the security token service,
the specification of token references will become very flex-
ible. The Component Matching also fills the security gap
in the certificate access which required special Directory In-
formation Tree (DIT) structuring to avoid. The Component
Matching and GSER facilitate the flexible and extensive use
of security token references in SOAP messages.

This paper is organized as follows. Section 2 introduces
WS-Security and its use of X.509 certificates as security to-
kens. Section3 presents an example X.509Data extension
element and how Component Matching technology is used
for XKMS. Section 4 introduces GSER and the Component
Matching. In Section 5, we present the design of the GSER
and Component Matching support in the OpenLDAP di-
rectory server. Section 6 shows experimental results of our
prototype implementation of LDAP component matching in
slapd. Section 7 concludes the paper.

2. WEB SERVICES SECURITY

2.1 SOAP and WS-Security

SOAP (Simple Object Access Protocol) is a protocol for
invoking methods on servers, services, components, and ob-
jects [1]. It is a way to create widely distributed, complex
computing environments using an existing Internet infras-

01 <?xml version="1.0" encoding="utf-8"?>

02 <S:Envelope xmlns:S=http://www.w3.0rg/2001/12/soap-envelope>
03 <S:Header>

04 <wsse:Security>

05 <wsse:SecurityTokenReference wsu: Id="#X509Token

06 <wsse:Reference

07 URI="Idap://ldap.example.com/dc=example, dc=ibm???(userCertificate:componentFilterMatch:=
08 and:{ item:{ component “tbsCertificate.serialNumber”, rule allComponentsMatch, value 9453771 },
09 item:{ component “tbsCertificate.extensions.1.KeyUsage.value”, rule bitStringMatch, value ‘01000000'B }}")>
10 </wsse:SecurityTokenReference>

11 <ds:Signature>

12 <ds:Signedinfo>

13 <ds:CanonicalizationMethod

14 Algorithm="http://www.w3.0rg/2001/10/xml-exc-c14n#"/>

15 <ds:SignatureMethod

16 Algorithm="http://www.w3.0rg/2000/09/xmldsig#rsa-shal"/>

17 </ds:Signedinfo>

18 <ds:SignatureValue>

19 HplZkmFZ/2kQLXDJbchm5gK..

20 </ds:SignatureValue>

21 <ds:Keylnfo>

22 <wsse:SecurityTokenReference>

23 <wsse:Reference URI="#X509Token"/>

24 </wsse:SecurityTokenReference>

25 </ds:KeyInfo>

26 </ds:Signature>

27 <lwsse:Security>
28 </S:Header>

29 <S:Body>
30 <m:GetlLastTradePriceResponse xmins:m="http://example.com”>
31 <Price>34.5</Price>

32 </m:GetLastTradePriceResponse>
33 </S:Body>
34 </S:Envelope>

Figure 1: Web Service Request and Response with Security Token Reference.

tructure, enabling Web service developers to build Web ser-
vices by linking heterogeneous components over the Internet.
For interoperability over heterogeneous platforms, it is built
on top of XML and HTTP which are universally supported
in most services.

WS-Security [17] is recently published as the standard for
secure Web Services. It provides a set of mechanisms to
help Web Services exchange secure SOAP messages. WS-
Security provides a general purpose mechanism for signing
and encrypting parts of SOAP messages for authenticity and
confidentiality. It also provides a mechanism to associate se-
curity tokens with the SOAP messages to be secured. The
security token can be cryptographically endorsed by a se-
curity authority. It can be either embedded in the SOAP
message or acquired externally.

2.2 LDAP-PKI in WS-Security

In WS-Security, a security token can be either embodied in
a SOAP message or acquired from an external service by
following SecurityTokenReference [17]. Signed security to-
kens such as X.509 certificates are accessed through differ-
ent forms of references defined in the WS-Security standard
and in various security token profiles [18]. The security to-
kens can be retrieved and registered with the existing access
methods. Either standard access protocols such as LDAP
and HTTP or an ad-hoc access mechanism can be used to ac-
cess security tokens. XKMS (XML Key Management Spec-
ification) [20] also provides a Web Service client which lacks
direct access to the security tokens with an offloading mech-
anism. X.509 certificates are the most universal form of the
security tokens which is well proven in the heterogeneous

89

and distributed network, the Internet. X.509 certificates
were originally designed to be stored in directories. Hence,
directory access protocols such as X.500 and LDAP are the
most appropriate way to access them in terms of the naming
and information models and its powerful search capabilities.

In the following example scenario which illustrates an op-
erational flow of accessing security tokens for a SOAP mes-
sage shown in Figure 1, it is assumed that the Web service
provider needs to contact the Security Token Service in or-
der to fetch and verify its security token. The flow is as
follows:

1. The service requester constructs a SOAP message. It
contains a signature for the key elements of the mes-
sage. <ds:signature> is placed in the Security Header
block (lines 03 - 28 in Figure 1). In this scenario,
a X.509 certificate is located in the external Security
Token Service. The reference to the external token
or the certificate is included in the message within
<SecurityTokenReference> elements (line 05 - 10). The
constructed message is sent to the Web Service.

2. The Web Service fetches KeyInfo in line 21-25. It refer-
ences X.509Token, or ID which is defined in line 05-10
as SecurityTokenReference. In this case, the reference
is an LDAP URI in line 07 - 09. In the URI, there
is a component filter in which “tbsCertificate.issuer”
and “tbsCertificate.extensions.1.keyUsage.value” refer
to the corresponding components of a certificate and
9453771 and “’°01000000’B” are assertion values against
the components. More detailed explanation of the
component filter will be described in Section 5.2.1.

CertificateAssertion ::= SEQUENCE {
serialNumber
issuer [1] Name OPTIONAL,

subjectKeyldentifier [2] SubjectKeyldentifier OPTIONAL,

authorityKeyldentifier [3] AuthorityKeyldentifier OPTIONAL,
certificateValid [4] Time OPTIONAL,

privateKeyValid [5] GeneralizedTime OPTIONAL,

subjectPublicKeyAlgID [

keyUsage [7] KeyUsage OPTIONAL,

subjectAltName [8] AltNameType OPTIONAL,

policy [9] CertPolicySet OPTIONAL,
pathToName [10] Name OPTIONAL,
subject [11] Name OPTIONAL,
nameConstraints [

(a) CertificateAssertion XML Schema

[0] CertificateSerialNumber OPTIONAL,

6] OBJECT IDENTIFIER OPTIONAL,

12] NameConstraintsSyntax OPTIONAL

<wsse:SecurityTokenReference>
<ext:Keyldentifier EncodingType="...#XER"
ValueType="...#GenericCertificateFields”
<CertificateAssertion>
<serialNumber>9453771</serialNumber>
<issuer>cn=ray</issuer>
<keyUsage>Signature</keyUsage>
</CertificateAssertion>
<wsse:Keyldentifier>
</wsse:SecurityTokenReference>

(b) XER

<wsse:SecurityTokenReference>
<wsse:Keyldentifier EncodingType="... #GSER"
ValueType="...#GenericCertificateFields”
{ serialNumber 9453771, issuer {type cn, value ray} ,
keyUsage ‘100000000'B }
<wsse:Keyldentifier>
</wsse:SecurityTokenReference>

(c) GSER

Figure 2: Certificate Assertion Schema Definition and GenericCertificateReference XER and GSER.

3. The Security Token Service searches for the certifi-
cate according to the LDAP URI from the Web ser-
vice provider and returns the resulting certificate as a
search result.

4. The Web service provider validates the <ds:Signature>
in the <wsse:Security > header and processes the SOAP
message to return the service result to the Web service
requester.

In the above scenario, the Web service retrieves the secu-
rity token stored in a directory through LDAP as a security
token access method. In order to retrieve the certificate,
the Web service will send an LDAP request correspond-
ing to the reference URI. The Security Token References
can have various forms of references in addition to LDAP
URI. In case of X.509 certificates, they can be referenced
by X509IssuerSerial, X509SubjectName, and X509SKI. The
<ds:X509Data> element of the <ds:KeyInfo> can also be
extended to represent elements from external namespaces.

2.3 LDAP Deficiencies for Certificate Access
Although WS-Security needs to be able to locate a certifi-
cate by matching against arbitrary components of a certifi-
cate, LDAP does not easily provide an universal matching
mechanism to the X.509 certificate. In LDAP, attribute and
assertion values are represented in octet string. No struc-
tural information is stored along with them. A brute force
way to provide matching for complex attributes is to pro-
vide syntax specific matching rules. For a X509IssuerSerial
reference for example, it is possible to write a special match-
ing function which matches the certificate attribute against
the assertion value consisting only of issuer name and serial
number. Obviously, it will be too costly to define syntax
specific matching rules for all possible references. In or-
der for an LDAP server to support X509SubjectName and
X509SKI, matching rules specific to the references need to
be implemented. For a very flexible reference such as Cer-
tificateMatch as defined in X.509 recommendation [10], it
would be very difficult to provide the corresponding match-
ing rule in LDAP. Moreover, it would be difficult to cope
with changes such as certificate extensions.

90

To address this mismatch between X.509 certificate and
LDAP, the attribute extraction mechanism was recently pro-
posed in the Certificate Parsing Server (XPS) designed by
the University of Salford [3]. In XPS, all the certificate
attributes are extracted and stored as simple and search-
able LDAP attributes and matching is performed on the ex-
tracted attributes. Although it facilitates matching against
components of a complex attribute, it can be considered as
a suboptimal approach due to the following respects. First,
matching is performed on the extracted attributes but not
on the certificate itself. Because the contents of the ex-
tracted attributes are mutable, there is a chance of return-
ing wrong certificates to Web services. It is strongly recom-
mended for Web services to verify the returned certificate
again. In order to minimize the security hole, the server ad-
ministrator must ensure the integrity of a certificate and ex-
tracted attributes. Second, when there is more than one cer-
tificate in a directory entry, one per key usage for example,
the Web services may be returned with multiple certificates
even though they searched for certificates having a specific
key usage. The matched values control [10] does not solve
the problem, because matching is not performed on the cer-
tificate itself. It is inevitable to restrict the Directory Infor-
mation Tree (DIT) structure in designing a certificate DIT
to avoid an additional searching step in the Web services [2].
Third, the XPS does not facilitate matching against a com-
plex assertion value as in X.500 directory. It is not possible
to perform a flexible matching as in X.509 certificateMatch
without making the LDAP directory server ASN.1 aware.

3. COMPONENT MATCHING

In order to overcome the mismatch between LDAP and the
requirement of flexible certificate matching imposed by ad-
vanced applications like Web Services, we decided to pro-
vide 1) ASN.l-awareness and 2) Component Matching ca-
pabilities to an LDAP directory server. With the ASN.1-
awareness support for the LDAP server, ASN.1 values are
manifested within the server. It will be possible to use an
ASN.1 value in an assertion. Hence, matching can be per-
formed in an abstract level according to the corresponding
ASN.1 type definition. With Component Matching, it be-
comes possible to match an assertion value against specific

Tier 0 RetrievalMethod

| Certificate / CRL Tier1/2 Client
g Access XKMS Trust Locate / Validate
=5 Service
P Key Mgmt
8 Management Registration
X7 . Revocation
8_ Transactions Recovery
Q
o
_
5 Management
S | Publish Registration Transactions
‘T | Certificate i
‘S Authority (RA)
b= -
=
8 Publish Certificate

Certificate / CRL Authority (CA)

Figure 3: XKMS in PKI.

components of a complex attribute. For example, an infras-
tructure is provided to perform matching on an arbitrary
component of an X.509 certificate, such as serialNumber,
issuer, keyUsage, and subjectAltName.

Compared to the XPS approach, our approach of providing
ASN.1 awareness and Component Matching has the follow-
ing advantages:

1. It does not store the X.509 attributes separate from
the certificate itself. Therefore, it does not increase
storage requirements and does not open a potential to
the compromised integrity between a certificate and
its extracted attributes.

2. Matching is performed directly on the contents of the
certificate but not on the associated attribute’s con-
tents. Even if there is more than one certificate in a
user’s entry, it can return only the matched certificate
when it is used with the matched values control [10].

3. Flexible matching becomes possible because match-
ing between an attribute value and an assertion value,
both represented in ASN.1, will be provided.

3.1 Component Matching and Security Token

Reference
In the X.509 token profile [18] of WS-Security, it is defined
that the following three types of token references can be
used:

1. Reference to a Subject Key Identifier: the value of a
certificate’s X.509SubjectKeyldentifier.

2. Reference to a Security Token: either an internal or
an external URI reference.

3. Reference to an Issuer and Serial Number: the certifi-
cate issuer and serial number.

Because it is defined to be extensible, any security token can
also be used with appropriate schemas. It is shown in Fig-
ure 1 that the <ds:X509Data> element of <ds:KeyInfo>

91

is used as the security token. <ds:X509Data> defined in
[21] contains various references such as X509IssuerSerial,
X509SubjectName, X509SKI, and so on. With the ASN.1
awareness and the Component Matching support in an Open
LDAP directory server, these references can be used with-
out the need of implementing syntax specific matching rules
for various types of the references. It is also possible to
use elements from external namespace in <ds:X509Data>
for further flexibility. Figure 2 shows one such an example.
Here, the GenericCertificateReference element from dsext
namespace is used to provide a generic reference mecha-
nism which implements CertificateMatch in the X.509 rec-
ommendation [10]. The reference consists of a sequence of
certificate attributes, serialNumber, issuer, subjectKeylden-
tifier, authorityKeyldentifier, certificateValid, privateKey-
Valid, subjectPublicKeyAlgID, keyUsage, subjectAltName,
policy, pathToName shown in Figure 2 (a), each of which is
defined optional. By using the example reference, it would
be possible to resolve a security key reference in a very flex-
ible way. For instance, searching for a certificate having a
subjectAltName with a specific keyUsage becomes possible.
Figure 2 (b) shows that the reference is encoded in XML
while Figure 2 (c¢) shows that the reference is encoded in
GSER.

With the ASN.1 aware and Component Matching enabled
LDAP server, the flexible reference format for an X.509 cer-
tificate can now be defined in ASN.1 with configuring the
LDAP server to understand the reference. The required
matching rules, encoders, and decoders for the reference
type will be automatically generated and integrated to the
LDAP server. This improvement in flexibility will foster the
flexible use of security token references in the Web Services
by making it easy to create and update references.

3.2 Component Matching and XKMS

Figure 3 illustrates a general PKI architecture which is com-
prised of CA, RA, and two types of end-entities. When a
PKI is used for Web Services, there are two types of PKI
clients: one directly accesses PKI; the other indirectly ac-
cesses it by using service proxies such as XML Key Man-
agement Specification (XKMS) [20] services which provide
clients with a well defined interface to a PKI so as to hide
the complexities of the underlying PKI. The XML Key Infor-
mation Service Specification (X-KISS) is one of the services
provided by XKMS [20]. It defines two key services: locate
and validate. In the following sections, it will be presented
how the Component Matching can be used in the X-KISS
services with respect to certificates and CRLs access.

3.2.1 Certificate Access

Figure 4 shows an example X-KISS locate service request. In
the request, there is <QueryKeyBinding> which describes
how to bind this request to a desired public key. In the
example, <KeyUsage> and <ds:KeyInfo> are provided to
bind the request. A client using the XKMS service sends the
X-KISS Locate request shown in Figure 4. In response to
the request, the XKMS service needs to resolve the request
and then might contact an LDAP directory server to locate
the desired certificate. In the example locate request, the
serial number in line 15-17 and the key usage in line 07 are
supplied by the client for <QueryKeyBinding>. With Com-
ponent Matching, the component filter will be constructed

00 <?xml version="1.0" encoding="utf-8"?>
01 <LocateRequest xmins:ds=http://www.w3.0rg/2000/09/xmldsig#

02 xmins:xenc=http://www.w3.0rg/2001/04/xmlenc#
03 1d="18fc9f97052a34073312b22a69b3843b6"
04 Service=http://test.xmltrustcenter.org/XKMS
05 xmins="http://www.w3.0rg/2002/03/xkms#">
06 <QueryKeyBinding>

07 <KeyUsage>Signature</KeyUsage>

08 <ds:KeylInfo>

09 <wsse:SecurityTokenReference>

10 <ds:X509Data>

11 <ds:X509IssuerSerial>

12 <ds:X509IssuerName>

13 0=IBM,c=US

14 </ds:X509IssuerName>

15 <ds:X509SerialNumber>

16 9453771

17 </ds:X509SerialNumber>

18 </ds:X509IssuerSerial>

19 </ds:X509Data>

20 </wsse:SecurityTokenReference>

21 </ds:Keylnfo>

22 </QueryKeyBinding>
23 </LocateRequest>

Figure 4: Example XKMS Locate Service Request.

from the request by the XKMS services as shown in Figure 5.
The component reference “tbsCertificate.extension.*” refers
to all extensions of the certificate of which KeyUsage is one
extension. In the value, “extndID 15” is the object identifier
of a KeyUsage and “’100000000’B” is used to check if a cer-
tain bit(the first bit for signature) is set. The corresponding
component filter of Figure 5 enables the XKMS service to
find a certificate of an issuer for a signature purpose only. If
the client uses GenericCertificateReference explained in the
previous section and the Component Matching is supported
in an LDAP directory server, the XKMS service can use ar-
bitrary fields of a certificate in order to construct component
filters to process the locate request.

3.2.2 CRL Access

The XKMS service also provides an X-KISS Validate Ser-

vice with which a client using XKMS services can check the

status of a public key by sending some of <ds:KeyInfo> el-

ements in <QueryKeyBinding> in line 08-21 of Figure 4.

For instance, if it checks the validity of a X.509 certificate

using CRLs, the client may send <X509Data> containing

<ds:X509SerialNumber> 9453771 < /X509SerialNumber> in
<QueryKeyBinding>. In response to the request, the XKMS
service might choose to use either CRL based validation or

Online Certificate Status Protocol (OCSP) [16].

A certificate revocation list (CRL) [6] can be generated and
distributed periodically by the CA, making it available on
the Internet by typically using an LDAP directory server or
a Web server. Because a CRL contains the list of multiple re-
voked certificates, it can become quite large and burdensome
to transmit it over the Internet. To alleviate this problems,
OCSP was proposed to provide a timelier and more efficient
status mechanism. The XKMS service can speak to OCSP
responders which can check the status of a certificate. The
OCSP responder returns the status (either good, revoked, or
unknown) of a requested certificate. With OCSP, the XKMS
service does not need to download and scan the CRL, which
are burdensome to the service.

We conceive that Component Matching can be used as an

92

(userCertificate:componentFilterMatch
= and{
item:{
component “tbsCertificate.serialNumber”,
rule IntegerMatch,
value 9453771

h
item:{
component “tbsCertificate.extension.*”,
rule allComponentsMatch,
value {extnID 15, extnValue ‘100000000'B}

}

Figure 5: Example Component Filter.

alternative to OCSP. The CRL is a sequence of pairs of a
revoked certificate’s serial number and a revoked time [6].
In order to check the status of a certificate, the XKMS ser-
vice needs to construct a component assertion by using the
serial number of the certificate as shown in the upper item
of Figure 5 and send it to the LDAP directory server. Then
the server will perform Component Matching on the CRL
against the assertion to find the asserted certificate in the
CRL. By using the Component Matching based CRL vali-
dation, the whole CRLs is not required to be downloaded
to the XKMS service. An LDAP server already has been
widely used for distributing certificates and CRLs. Hence,
if the server can perform validity checking over LDAP as
well, it will be a very practical and efficient alternative to
the OCSP which needs additional protocol layer, or and an
OCSP responder.

4. COMPONENT MATCHING AND GSER
The attribute syntaxes of X.500 are defined in ASN.1 types.
Basically, the types are constructed structurally from basic
types to composite types. Every field of an ASN.1 type is a
component. Component Matching [15] defines how to refer
to a component within an attribute value by retrieving the
structural information of an ASN.1 type and how to match
the component against an assertion value. Matching rules
are defined for the ASN.1 basic and composite types. It also
defines a new assertion and filter targeted for a component.
These definitions are based on ASN.1 so that they can be
applied to any syntax, as long as the syntaxes are specified
in ASN.1.

A native LDAP encoding does not represent the structure
of an ASN.1 type. Instead, it is represented either in octet
string or in binary. With the LDAP encoding, as a result,
it is difficult to contain the structural information of ASN.1
type in its representation. In order to solve this problem,
Legg [14] recently proposed GSER (Generic String Encod-
ing Rules). Component matching uses GSER as its basic
encoding for the component filter. GSER generates a hu-
man readable UTF-8 character string encoding of a given
ASN.1 specification. It defines UTF8 string encodings at
the lowest level of primitive ASN.1 types such as INTE-
GER, BOOLEAN, and STRING types and then it builds
up more complex ASN.1 types such as SEQUENCE and
SET from the lowest level. Thus, the structural information
of an ASN.1 specification is maintained in encodings so that
it can be recovered in the decoding process. By using GSER
to store attribute values instead of the native LDAP string
encoding, LDAP server will become capable of identifying

TBSCertificate :: = SEQUENCE {
version [0] EXPLICIT Version DEFAULT v1,
serialNumber CertificateSerialNumber,

signature Algorithmldentifier,

issuer Name,

validity Validity, :>
subject Name,

subjectPublickKeyInfo subjectPublicKeylInfo,
issuerUniquelD [1] IMPLICIT Uniqueldentifier OPTIOMAL
subjectUniquelD [2] IMPLICIT Uniqueldentifier OPTIONAL
extensions [3] EXPLICIT Extensions OPTIONAL

ASN.1 Compiling

C internal data structure

typedef struct TBSCerticate{
Asnint version;
Asnint serialNumber;
struct Algorithmidentifier* signature;
struct Name* issuer;

Decoding
DecTBSCertificate(...)

Encoding

u
n
n
] EncTBSCertificate(...)
|

IIIII>

{ version 2,
serialNumber 12345 ,
signature { algorithm 1.2.840.113549.1.14, parameters NULL},
issuer {{type cn, value IBM trust} , {type o, value IBM},{type c, value US}},
validity {notBefore {2004 01 13 18 59}, notAfter {2005 01 13 18 59} },

GSER encodings

Figure 6: ASN.1 TBSCertificate specification, its compiler output, and example GSER encodings.

the structure of ASN.1 specification of the attribute types.
Furthermore, a component filter of an LDAP request is also
encoded in GSER. Hence, GSER is an essential mechanism
to ASN.1 awareness and Component Matching. GSER en-
coding can also be used in an assertion to facilitate a very
flexible and abstract matching of two ASN.1 values.

Figure 6 shows the ASN.1 type specification of TBSCertifi-
cate and its GSER encodings. TBSCertificate is defined as
SEQUENCE so that there are curly braces at the beginning
and at the end of its GSER encodings. It has version, se-
rialNumber etc. as its components inside of SEQUENCE.
Within the braces in the encoding, there is version and 2, or
its value, followed by a comma which separates the encod-
ing of the subsequent field. GSER defines each basic type’s
encoding and then combines them structurally to more com-
plex ones by using “{”, “” and “}”. On the other hand, a
native LDAP encoding does not have any uniform rule to
construct the structural information of attribute value in
it.

5. COMPONENT MATCHING IMPLEMEN-

TATION IN OPENLDAP

An ASN.1 compiler translates ASN.1 modules into C data
structures representing ASN.1 and their encoding / decod-
ing routines as illustrated in Figure 7. We extended the eS-
NACC ASN.1 compiler to implement the GSER backend in
addition to the originally supported BER and DER [12]. It
also generates component equality matching rules and com-
ponent extract functions which will be discussed in the rest
of the section in detail. In order to facilitate the integration
of the newly defined syntaxes without the need of rebuild-
ing the slapd executable, the generated data structures and
routines are built into a module which can be dynamically
loaded to slapd.

The rest of the section will provide a detailed description
of the component matching in two steps. After describing
how to make the OpenLDAP directory server ASN.1 aware,
the description of component filter processing, aliasing, and

93

ASN.1 types

7
/
/
\
‘\
C Data structures \
I} ;

\
\
1

[}

i

SSNACC ;ﬁggﬁgﬁ GS/B/DER decoder
Compiler OpenLDAP
| E— - ; Server (slapd)
omponent equality O
GSER back-end matching rule ,o

H
!
Component extract !

function !

/| |.

/
Dyna,r’nic Module
% '," Load

Figure 7: Input and Output of an eSNACC Com-
piler.

component indexing will be presented. Then, the overall
operational flow of Component Matching will be described.

5.1 ASN.1 Awareness

5.1.1 eSNACC Compiler

We have implemented a GSER backend for the extended
eSNACC compiler. GSER can be used as an LDAP en-
codings for newly defined attribute types. With GSER,
string-based LDAP encodings can maintain the structures
of their corresponding ASN.1 types. The assertion values
in the component filter are also represented in GSER and
the GSER decoders are used to decode them into their in-
ternal representations. Figure 6 shows the example C data
structure for a TBSCertificate ASN.1 type and its corre-
sponding GSER encodings. Generated C data structure for
the ASN.1 type has data fields corresponding to components
of the ASN.1 type. Once the C data structure for TBSCer-
tificate is instantiated, it can be converted into GSER en-
codings by EncTBSCertificate() and the encodings can be
decoded into the C data structure by DecTBSCertificate().
The eSNACC compiler also generates matching rules and
extract functions automatically which will be further dis-
cussed in the next subsection.

Table 1: Attribute Aliasing Table.

| Alias Attribute [Aliased Attribute [

Component Reference [

Matching Rule ‘

x509certificateSerialNumber userCertificate

tbsCertificate.serial Number

integerMatch

x509certificatelssuer userCertificate

tbsCertificate.issuer distinguishedNameMatch

5.1.2 Component Representation of ASN.1 Types

A new data structure of slapd is needed to represent an
attribute value at its component level because the original
data structure for attributes does not contain the structure
information of an ASN.1 type in its representation. Every
field of an ASN.1 type is a component which is addressable
by a component reference. In our implementation, the com-
ponent data structure consists of two parts: one to store
the value of the component; the other to store a component
descriptor which contains information on how to encode, de-
code, and match the value of the component.

The data structure of a component appears as a tree which
keeps the structural information of the original ASN.1 spec-
ification using nodes and arcs. Each component node of
the tree not only has data values but also represents the
structural information of the given ASN.1 specification by
having links to subordinate nodes. In the tree, any node
can be referenced by a component reference in order to per-
form matching on the corresponding component. Hence, we
need a function to traverse the tree and locate the refer-
enced node. The ASN.1 compiler also generates component
extractor routines for this purpose.

5.1.3 Syntax and Matching Rules

An attribute is described by an attribute type in LDAP. An
attribute type contains two key fields which help to define
the attribute as well as rules that it must follow. The first
field is a syntax which defines the data format used by the
attribute type. The second field is a matching rule which is
used by an LDAP server to compare an attribute value with
an assertion value supplied by the LDAP search or compare
operations. Attributes must include the matching rules in
their definition. At least, an equality matching rule should
be supported for each attribute type. From the viewpoint of
an LDAP server, an ASN.1 specification defining a new at-
tribute type requires a new syntax and its matching rule to
be defined in it. To fully automate the component match-
ing in which the composite attribute types are defined in
ASN.1, we extended the eSNACC compiler to generate the
basic equality matching rule of a given ASN.1 type, or all-
ComponentMatch matching rule specified in RFC 3687 [15].
The allComponentMatch matching rule evaluates to true
only when the value of the referenced component of the
attribute and that of ComponentAssertion are the same.
It can be implemented by performing matching from the
top-most component which is identified by the component
reference recursively down to the subordinate components.
The generated matching function of each component can be
overridden by other matching functions through a matching
rule refinement table. Therefore, it is possible that a syn-
tax developer can replace the compiler-generated matching
functions with existing matching functions of slapd which
might be more desirable. In order to support this refining
mechanism, slapd checks if a matching function is overrid-
den or not by looking up the refinement table, whenever it

94

New Matching Rule

» N . Component Reference
(userCertificate:componentFilterMatch
:= notiitem:{ —

/ component “tbsCertificate.serialNumber”,

rule IntegerMatch,
Component Filter value 9453771

}
) Component Assertion

Figure 8: Example Component Filter.

is executed.

5.2 Component Matching

5.2.1 Component Assertion and Filter

RFC 3687 [14] defines a new component filter as the means
of referencing a component of a composite attribute and as
the means of representing an assertion value for a composite
attribute types. Component assertion is an assertion about
the presence or the values of components within an ASN.1
value. In the component assertion, there are three key fields:

e Component Reference: specifies which component of
an attribute value will be matched against an assertion
value.

e Matching Rule: specifies which matching rule will be
used to perform matching on the values.

e Value: An assertion value in GSER.

Component filter is an expression of component assertions,
which evaluates to either TRUE, FALSE, or Undefined af-
ter performing matching. Figure 8 illustrates an exam-
ple component filter. The component reference “Certifi-
cate.serialNumber” identifies one component in the Certifi-
cate attribute value. In the component reference, “.” means
identifying one of components subordinate to the preceding
component. In the component assertion, rule is followed by
an integerMatch matching rule [11] which will be used to
compare the following assertion value with the referenced
component of the attribute value. The routines required to
support the component filter and the component assertion
were hand-coded while the routines for the component asser-
tion values are automatically generated from a given ASN.1
type.

5.2.2 Attribute / Matching Rule Aliasing

To enable component matching, clients as well as servers
need to support GSER and new component matching rules.
However, the client side changes will be minimal, if at all, be-
cause the component filter can be specified by using the ex-
isting extensible matching rule mechanism of LDAPv3 and
the component assertion value is represented as the text
centric GSER encoding rules. In particular, the clients that

Table 2: Decoder Performance Comparison.

d2i X509() | ASN.1 ASN 1
Decoder | Decoder for CM
| Time (usec) [32.74 [40.20 [72.00 ‘

accept search filters as strings require no changes to utilize
component matching other than filling in the necessary com-
ponent filter as the search filter. However, for those clients
who have search filters hard coded in them, we propose an
attribute aliasing mechanism which maps a virtual attribute
type to an attribute component and a component matching
rule, and a matching rule aliasing mechanism which maps a
virtual matching rule to a component assertion.

Attribute aliasing registers a set of virtual attributes to an
LDAP server. The virtual attributes themselves find corre-
sponding matching rules and component references by look-
ing up an attribute alias table. The example attribute alias
table is shown in Table 1. x509certificateSerialNumber at-
tribute is aliased to userCertificate.tbsCertificate.serialNumb
er with the integerMatch matching rule. Hence, the filter
(x509certificateSerialNumber=12345) is considered equiva-
lent to (userCertificate:ComponentFilter:=item:component

tbsCertificate.serialNumber, rule integerMatch, value 12345).

With an attribute aliasing, clients only have to form sim-
ple assertions to utilize component matching. A matching
rule alias works in a similar way. An alias matching rule is
mapped into the corresponding a component reference and
a matching rule.

5.2.3 Putting It All Together

The overall flow of acquiring security tokens in Web services
with Component Matching is as follows. First, the ASN.1
specification of a X.509 certificate is compiled and the gen-
erated routines are loaded into the LDAP server. Once they
are loaded successfully, Component Matching on the certifi-
cate can be performed in the server. Then, the Web Service
requester sends the Web Service provider a SOAP message
which contains SecurityTokenReference. URI reference was
taken as an example in the following discussion. The Web
service provider fetches the SecurityTokenReference from
the message and performs an LDAP search based on the
LDAP URI in it. The search filter can contain the compo-
nent assertion against the corresponding component of the
certificate. Accepting a component search request, certifi-
cates in the LDAP server are decoded by the corresponding
DER decoder to construct a component tree of the certifi-
cate. It has all certificate attributes as defined in the X.509
recommendation. The incoming component filter is parsed
to obtain the component assertion value and the component
reference by the GSER decoder for the filter. The compo-
nent extractor extracts the referenced component from the
component tree which is specified by the component refer-
ence in the component filter. The component assertion value
is decoded by the corresponding GSER. decoder for the ex-
tracted component. At this point, we have obtained the
ASN.1 internal representation of both the component asser-
tion value and the returned certificate component. Matching
is performed on these two internal data structures and the
matched certificate is returned to the Web Service provider.

95

6. PERFORMANCE CONSIDERATIONS

The benchmarking was performed with a 40,000 entry DIT.
Using an LDAP benchmark in ruby scripts [13], only read
operation was performed first on the entries with varying
base DNs in the LDAP search requests. The read bench-
mark was made to test how fast data could be read from
slapd. The machine running slapd has two 2.40GHz Hy-
perthreading Intel Xeon CPUs and 1.5Gbytes memory. The
slapd was configured with a BDB backend. First, we mea-
sured the performance of eSNACC compiler generated DER

decoders as compared to that of the openssl decoder, d2i_X509 ()

function (manually written certificate parsing function). Ta-
ble 2 shows how much time both decoders took to decode
an example X.509 certificate generated by openssl.

d21.X509 took 32.74 usec to decode a certificate. The com-
piler generated DER decoder took 40.20 usec in case of not
allocating component descriptors which is not out side of
the pure decoding process. The compiler generated decoder
took 7.46 usec longer as compared to d2i_X509(). It is be-
cause the decoder allocated memory not only for ASN.1 val-
ues but also for the component data structures of each fields
of the certificate.

We also integrated the compiler generated decoders into
slapd and performed searching by Component Matching.
We measured the average time to search for an entry con-
taining the target certificate, varying the number of concur-
rent clients. The search scope is base and a component filter,
“(userCertificate:componentFilterMatch:=item:component

“tbsCertificate.serialNumber”, rule integerMatch, value 945
3771)” is used in the search. As the number of concurrent
clients is increased from 1 to 8, the overall searching time
of both cases were also increased from 1 msec to 6 msec
approximately. When the number of concurrent clients is
1, Component Matching (CM) takes 1.2 msec and d2i_X509
takes 1.18 msec. When the number of concurrent client be-
come 8, CM takes 5.91 msec and d2i_X509 takes 6 msec.
The time difference between the Component Matching and
d2i_X509 is very small and can be considered to be within
the experimental error bound. It is because the decoding
itself is only small portion of a search operation. It only
accounts for 4-7% of overall search time. We also performed
subtree search and it appeared that the average searching
time of CM was only slightly higher than that of d2i_X509.
The overheads of parsing component filters can be removed
by using attribute and matching rules aliases.

Overall searching time is heavily dependent on other factors
such as filter parsing, indexing, and caching rather than de-
coding. By the experiment, It was proven that a flexible and
secure way of accessing a certificate and CRL was achieved
without performance degradation.

The maintenance of proper indices is critical to the search
performance in the Component Matching as much as in the
conventional attribute matching. In slapd, the attribute in-
dexing is performed by generating a hash key value of the
attribute syntax, matching rule, and the attribute value and
maintains the list of IDs of those entries having the matching
value in the set of attribute values of the indexed attribute.
The component indexing can be specified in the same way
as the attribute indexing, except that the component ref-

erence is used to specify which component of a composite
attribute to be indexed. If the referenced component is a
basic ASN.1 type, the indexing procedure will be the same
as the attribute indexing. The indices for the referenced
component are accessed through a hashed value of the cor-
responding syntax, matching rule, and value in the index
file for the referenced component of the composite attribute.
In OpenLLDAP, the indexing of the composite component is
centered on the GSER encodings of the component value.
The hash key of a component value is generated from its
GSER encodings together with its syntax and matching rule.
For the SET and SET OF constructed types, it is required
to canonicalize the order of the elements in the GSER en-
codings before generating the hashed key value. For <all>
component reference of SET OF and SEQUENCE OF. it is
needed to union the indices for each value element of SET
OF and SEQUENCE OF.

7. CONCLUSION

WS-Security is a key protocol for securing SOAP message
exchanges. It defines token references in order to acquire se-
curity tokens internally and externally. An X.509 certificate
is an universally used security token and is usually stored
and retrieved via LDAP. The X.509 certificate profile of WS-
Security and XML Signature standards provides a rich set of
reference methods for the X.509 certificate in a flexible and
extensible way. Component Matching and ASN.1 awareness
in LDAP are very effective mechanisms to cope with this
flexibility and extensibility.

This paper presented the design of the Component Match-
ing in the OpenLDAP directory server in the context of
WS-Security. It is described the first implementation of the
component matching and ASN.1 awareness in a pure LDAP
based directory server. In order to provide a fully auto-
mated infrastructure, we extended an ASN.1 compiler to
automatically generate the component extraction / match-
ing routines and encoders / decoders of BER, DER, and
GSER for a given ASN.1 type. To make the server un-
derstand an incoming ComponentFilter in GSER format,
the search filter processing was modified to support Compo-
nentFilter, ComponentAssertion, and ComponentReference
as well. For backward compatibility in the case where the
search filters are hard coded to client applications, we also
provide an alias mechanism for the attribute names and the
matching rules. According to the experiments, the perfor-
mance of the prototype system which integrated compiler-
generated decoders was proven to be competitive to that of
the hand-optimized ones. We conclude from the experiment
that flexible and secure certificate access can be achieved
without losing performance and manageability.

8. REFERENCES

[1] D. Box and D. Ehne. Simple object access protocol
(SOAP). W3C Note, May 2000.

[2] D. W. Chadwick. Deficiencies in LDAP when used to
support PKI. Comm. of the ACM, 46(3), March 2003.

[3] D. W. Chadwick, E. Ball, and M. Sahalayev.
Modifying LDAP to support x.509-based PKIs. In
17th Annual IFIP WG 11.3 Working Conference on
Database and Applications Security, August 2003.

96

[4] W. Ford and D. Solo. Internet x.509 public key
infrastructure certificate and certificate revocation list
(CRL) profile. RFC 3280, 2002.

[5] J. Hodges, R. Morgan, and M. Wahl. Lightweight
directory access protocol (v3): Technical specification.
RFC 3377, September 2002.

[6] R. Housley, W. Ford, W. Polk, and D. Solo. Internet
X.509 public key infrastructure certificate and CRL
profile. RFC 2459, January 1999.

[7] ITU-T Rec. X.511, The directory: Abstract service
definition, 1993.

[8] ITU-T Rec. X.690, ASN.1 encoding rules:
Specification of basic encoding rules (BER), canonical
encoding rules (CER), and distinguished encoding
rules (DER), 1994.

[9] ITU-T Rec. X.680, Abstract syntax notation one
(ASN.1): Specification of basic notation, December
1997.

[10] ITU-T Rec. X.509, The directory: Public-key and
attribute certificate frameworks, March 2000.

[11] ITU-T Rec. X.500, The directory: Overview of
concepts, models and service, February 2001.

[12] R. Joop. Snacc 1.2rj.
http://www.fokus.gmd.de/ovma/freeware/snacc/
entry.html.

[13] A. Krennmair and R. Lischka. Testing OpenLDAP
server, March 2004.

[14] S. Legg. Generic string encoding rules. RFC 3641,
October 2003.

[15] S. Legg. X.500 and LDAP component matching rules.
RFC 3687, February 2004.

[16] M. Myers, R.Ankney, A.Malpani, and C.Adams.
Internet X.509 public key infrastructure online
certificate status protocol - OCSP. RFC 2560, June
1999.

[17] OASIS. Web services security: SOAP message security
1.0 (WS-Security 2004). OASIS Standard 200401,
March 2004.

[18] OASIS. Web services security: X.509 certificate token
profile. OASIS Standard 200401, January 2004.

[19] The Unicode Consortium. The Unicode Standard,
Version 4.0. Addison-Wesley, Boston, 2003.

[20] W3C. XML key management specification (XKMS).
W3C Standard, March 2001.

[21] W3C. XML - signature syntax and processing. W3C
Standard, February 2002.

[22] F. Yergeau. UTF-8, a transformation format of ISO
10646. RFC 3629, November 2003.

