ZFS overview

And how ZFS is used in ECE/CIS

At the University of Delaware
www.eecis.udel.edu

Ben Miller

ZFS

File system and volume manager

After five years of development first
appeared in OpenSolaris, later in
Solaris 10 6/06 (u2).

Has been ported to FreeBSD and MacOS X
Linux has license issues... FUSE port done

Jeff Bonwick is a UDel (Math) graduate

ZFS main features

Simple administration

- cli In two commands: zpool and zfs
Pooled storage

Transactional semantics

- uses copy on write (COW)

- always consistent on disk
End-to-end data integrity

- blocks are checksummed

- in replicated configs data is repaired
Scalability

- 128 bit filesystem

ZFS pools

Disk storage is managed more like
RAM than traditionally

A ZFS pool is a set of disks (usually)
that are pooled together

Filesystems (and zvols) can then be
created on top of the zpools (dynamic)

All operations are COW which keeps the
on-disk state consistent.

ZFS — The Last Word in File Systems

FS/Volume Model vs. Pooled Storage

Traditional Volumes ZFS Pooled Storage
* Abstraction: virtual disk Abstraction: malloc/free
* Partition/volume for each FS * No partitions to manage
» Grow/shrink by hand » Grow/shrink automatically
* Each FS has limited bandwidth * All bandwidth always available
» Storage is fragmented, stranded All storage in the pool is shared

FS FS FS ZFS ZFS ZFS

ZFS — The Last Word in File Systems

FS/Volume Interfaces vs. ZFS
FS/Volume I/O Stack

Block Device Interface

« “Write this block,
then that block, ...”

* Loss of power = loss of
on-disk consistency

« Workaround: journaling,
which is slow & complex

ZFS 1/O Stack

FS

-

Object-Based Transactions 7PL

“Make these 7 changes ZFS POSIX Layer

to these 3 objects” >

Atomic (all-or-nothing)

Block Device Interface

= Write each block to each
disk immediately to keep
mirrors in sync

* Loss of power = resync

« Synchronous and slow

Volume

ZFS RAID features

Mirroring is supported
- N-way mirrors are possible

RAIDZ is similar to RAID5
RAIDZ?2 is similar to RAID6 (double parity)
No redundancy is also possible

- dynamic striping
- usually not recommended

RAIDZ

Works similar to RAID5

- have one extra disk and spread
parity over all the disks

- can operate in degraded mode with
one failed disk

- uses variable stripe width which does
away with the RAID5 write hole

- RAIDZ2 is double parity

- prefer JBOD with ZFS rather than
hardware RAID

ZFS — The Last Word in File Systems Page 10

Traditional RAID-4 and RAID-5

» Several data disks plus one parity disk
66666

* Fatal flaw: partial stripe writes

» Parity update requires read-modify-write (slow)

* Read old data and old parity (two synchronous disk reads)
* Compute new parity = new data * old data * old parity
 Write new data and new parity

- Suffers from write hole: ‘ " ‘ " “‘ ‘ . n = garbage

* Loss of power between data and parity writes will corrupt data
* Workaround: $$$ NVRAM in hardware (i.e., don't lose power!)

 Can't detect or correct silent data corruption

RAID-Z

* Dynamic stripe width

» Variable block size: 512 — 128K
» Each logical block is its own stripe

* All writes are full-stripe writes

* Eliminates read-modify-write (it's fast)

 Eliminates the RAID-5 write hole
(no need for NVRAM) 3

* Both single- and double-parity 12

© 0 ~N o a0 A W N = O

-
o

* Detects and corrects silent data corruption
» C hecksum-driven combinatorial reconstruction
* No special hardware — ZFS loves cheap disks

ZFS with JBOD

No need for NVRAM in hardware or
expensive RAID controllers.

ZFS works very well with JBOD (preferred)

Makes enterprise class storage much
less expensive

Better to use JBOD and disable hardware
RAID!

ZFS error correction

When a disk fails in a replicated config
the replacement will be resilvered.

ZFS provides scrubbing (like ECC mem)
to detect errors and correct the data.

During a scrub the pool is traversed and
the 256-bit checksum for each block
Is checked. Can happen while pool is
In use.

ZFS snapshots

Similar to NetApps WAFL snapshots
(see patent lawsuit)

Read-only image of the filesystem at
the point it is taken.

Multiple snapshots can be taken

- good for online backups

A clone is a writable snapshot and can
be mounted elsewhere.

A snapshot takes no space initially

As a result of COW space is used by
snapshots and clones with changes.

ZFS — The Last Word in File Systems

R
. m:cm;}';tems

Copy-On-Write Transactions

1. Initial block tree 2. COW some blocks

3. COW indirect blocks 4. Rewrite uberblock (atomic)

ZFS — The Last Word in File Systems

Bonus: Constant-Time Snapshots
* At end of TX group, don't free COWed blocks

* Actually cheaper to take a snapshot than not!

S napshot root =——>- .
<+— | ive root

* The tricky part: how do you know when a block is free?

ZFS — The Last Word in File Systems Page 7

End-to-End Data Integrity in ZFS

Disk Block Checksums

Checksum stored with data block

Any self-consistent block will pass

Can't detect stray writes

Inherent FS/volume interface limitation

Disk checksum only validates media

v/ Bit rot

/FS Data Authentication

C hecksum stored in parent block pointer

Fault isolation between data and checksum

Checksum hierarchy forms
self-validating Merkle tree

/FS validates the entire 1/0 path

xX X X X X

Phantom writes

Misdirected reads and writes
DMA parity errors

Driver bugs

Accidental overwrite

Bit rot

Phantom writes

Misdirected reads and writes
DMA parity errors

Driver bugs

SSNXXXKX

Accidental overwrite

ZFS — The Last Word in File Systems Page 8

Traditional Mirroring

1. Application issues a read.
Mirror reads the first disk,
which has a corrupt block.

It can't tell.

Application

2. Volume manager passes
bad block up to filesystem.
If it's a metadata block, the
filesystem panics. If not...

Application

3. Filesystem returns bad data
to the application.

Application

ZFS — The Last Word in File Systems Page 9

Self-Healing Data in ZFS

1. Application issues a read. 2. ZFS tries the second disk. 3. ZFS returns known good
ZFS mirror tries the first disk. Checksum indicates that the data to the application and

Checksum reveals that the block is good. repairs the damaged block.
block is corrupt on disk.

Application Application Application

ZFS properties

Another feature is that compression can
be turned on at the fs level.
- saves space and I/O
- as a result may be faster than not

doing compression depending on data.
- an all zero block takes no space
Encryption is being worked on (avail soon)
Many properties are integrated
- NFS sharing, mount options
- quotas, reservations

Zpool and ZFS versions

Actively developed and zpool version gets
updated with new features

- zpool version up to 14 now

- ECE/CIS is using version 10 currently

- version 3 - raidz2 and hot spares

- version 6 - bootfs propety

- zpool upgrade -v

- details available at www.opensolaris.org
ZFS also has version numbers

- currently up to 3

http://www.opensolaris.org/

ZFS use in ECE/CIS

ZFS first appeared in Nevada build 27a In
November 2005 (OpenSolaris source).

Had to compile OpenSolaris sources at
first to get ZFS support (kernel and O/N).

First test server a 32bit Dell dual Xeon
- had some 32 bit issues (ZFS likes 64bit)
- two pools, one on hardware RAID (ick)
(ZFS likes] BODs much better)

ECE/CIS ZFS first production roll out

After getting some things improved/fixed
that first test server was put into
production.

Served two raidz pools (one from internal
h/w RAID, one from a JBOD, both scsi).

Used as a samba server.

Worked until replaced in 2008 with an
Amdo4 system (SATA JBOD).

ECE/CIS Second big ZFS server

A Sun Fire X4200 used as the eecis
mail server (postfix) in 2006.

Mail stored on a scsi JBOD (raidz) with
73GB disks.

Stored in Maildir format (one filesystem
per user).

/var/postfix is a mirror on internal SAS

Later spamassassin put on dedicated SAS

Now uses ZFS boot also...

Other ECE/CIS uses

All home directories converted to either
raidz or raidz2 (when made available).

Web servers

Zones — makes having lots of zones on
a system easy! (zfs clones can be used).

Tape backup server

Backup replication server (we built half
a thumper... 24 750GB SATA drives).

Everything using ZFS boot now, no more
UFS.

More ECE/CIS uses

Clones used for diskless installation

Snapshots — done at noon, 6pm and 11pm
- hoon and 6pm replace previous day
- 11pm replaces a week ago
- online backups for deleted/corrupted

files.

- Also used in tape backups

NFS sharing can be much more finer
grained than with UFS.

Replication server

AKA virtual tape system for laptop backups
- use rsync from Windows/Mac
- snapshots as well

Extended for online replication of servers
- rsync and then take a snapshot
- also put to tape

Also some experimentation done with iscsi
and TimeMachine.

Latest server — X4540 (Thor)

Follow-up to the X4500 (Thumper)
48 SATA drives, 32GB memory

2 quad AMD Opteron, CF slot
250GB drives to 1TB drives

Will be used by ECE/CIS to replace current
nfs and samba servers

Will serve NFS, SMB, AFP and 1SCSI

2 mirrored boot disks + CF for emergency

4 x (8+2) raidz2 = 40 disk pool

2 reserved for ZIL (SSD), 4 hot spare

Quotas — one of the bigger problems

ZFS doesn't do user based quotas (will soon)
Quotas are set on filesystem.

- filesystems are cheap (*)

- give each user a filesystem
Because of COW trouble when 0 bytes left

The refqguota option added to not count
snapshots (has other bugs though).

Other Features used

Some filesystems are compressed
- can actually be faster.

User delegation to destroy snapshots

Servers used mirrored boot drives
- most other data is now raidz2

zpool status -x cron job to find problems

Creating filesystems a snap...

ZFS — The Last Word in File Systems Page 20

Creating Pools and Filesystems

Create a mirrored pool named “tank’

zpool create tank mirror c2d0 c¢3dO

Create home directory filesystem, mounted at /export/home

zfs create tank/home
zfs set mountpoint=/export/home tank/home

Create home directories for several users
N ote: automatically mounted at /export/home/{ahrens,bonwick,billm} thanks to inheritance

zfs create tank/home/ahrens
zfs create tank/home/bonwick
zfs create tank/home/billm

Add more space to the pool
zpool add tank mirror c4d0 c5dO

ZFS — The Last Word in File Systems Page 21

Setting Properties

Automatically NFS-export all home directories

zfs set sharenfs=rw tank/home

Turn on compression for everything in the pool

zfs set compression=on tank

* Limit Eric to a quota of 10g

zfs set quota=10g tank/home/eschrock

Guarantee Tabriz a reservation of 20g

zfs set reservation=20g tank/home/tabriz

¢
ZFS Snapshots

* Read-only point-in-time copy of a filesystem

* Instantaneous creation, unlimited number
* No additional space used - blocks copied only when they change
* Accessible through .zfs/snapshot in root of each filesystem

* Allows users to recover files without sysadmin intervention

Take a snapshot of Mark's home directory

zfs snapshot tank/home/marks@tuesday

* Roll back to a previous snapshot

zfs rollback tank/home/perrinCmonday

Take a look at Wednesday's version of foo.c
$ cat ~maybee/.zfs/snapshot/wednesday/foo.c

microsystems

Other ZFS feature examples

zfs clone tank/home@monday tank/userl

A full backup

zfs send tank/fs@A | ssh

An incremental backup

zfs send -1 tank/fs@A tank/fs@B | ssh ...

Can be used for remote replication
The right side of the pipe would be like
ssh host zfs receive -d /tank/fs

zpool export/import

mailto:tank/fs@A
mailto:tank/fs@A
mailto:tank/fs@B

ZFS — The Last Word in File Systems Page 15

Dynamic Striping

 Automatically distributes load across all devices

* Writes: striped across all four mirrors » Writes: striped across all five mirrors
* Reads: wherever the data was written » Reads: wherever the data was written
* Block allocation policy considers: * No need to migrate existing data
* Capacity * Old data striped across 1-4
* Performance (latency, BW) * New data striped across 1-5
* Health (degraded mirrors) « COW gently reallocates old data
ZFS ZFS ZFS ZFS ZFS ZFS

Add Mirror 5

ZFS — The Last Word in File Systems Page 27

microsystems

ZFS and Zones (Virtualization)

Dataset:
Logical
resource in
local zone

P ool:
Physical
resource in
global zone

» Secure — Local zones cannot even see physical devices
 Fast — snapshots and clones make zone creation instant

GloballZone

¢
[
Ditto Blocks

» Data replication above and beyond mirror/RAID-Z

» Each logical block can have up to three physical blocks

« Different devices whenever possible
* Different places on the same device otherwise (e.g. laptop drive)

* All ZFS metadata 2+ copies

« Small cost in latency and bandwidth (metadata = 1% of data)

* Explicitly settable for precious user data

* Detects and corrects silent data corruption

* |n a multi-disk pool, ZFS survives any non-consecutive disk failures
* |n a single-disk pool, ZFS survives loss of up to 1/8 of the platter

» ZFS survives failures that send other filesystems to tape

MECT O }l’i[HHHH

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

