
Unix File Systems

Ahmed Almohsin
amalmohsin21@tntech.edu

ABSTRACT

In this paper we will discuss about Unix file systems, such as

NFS, AFS, ZFS, GFS.

General Terms

Design, version, hierarchical. structure, interface.

Keywords

NFS, AFS, ZFS, GFS.

1. INTRODUCTION
UNIX keeps track of directories and files using a file system.

Once you log in to your UNIX account, you are automatically

placed in your "home" directory and so home directory becomes

your "present working directory" when you log in. In your home

directory, you can create files and directories and subdirectories.

UNIX file system has an upside down tree structure. At the very

top of the tree is the root directory, named "/". It is maintained by

UNIX system administrator. Under the root directory,

subdirectories organize the files and its subdirectories on the

system.

There are five types of UNIX files: Regular, Directories, Symbolic

Links, IPC Endpoints, and Device Files. Regular files are the most

common and contain basic data. Directories contain files and

other directories. Symbolic links is an alias for another directory

or file name. IPC (Inter-Process Communications) Endpoints

allow processes to communicate with each other while running on

the same machine. Device files are use to access hardware. They

are typically found in the “/dev” directory.

2. NFS
Network File System (NFS) version 3 was introduced by Sun

Microsystems in the mid 1990s. The NFS protocol is designed to

be independent from network architecture and transport protocol.

This independence is achieved through the use of Remote

Procedure Call (RPC). In the NFS version 3 protocols, servers do

not need to maintain the state of its clients in order to function

correctly and so it is called as stateless server implementation.

Stateless servers have an advantage in the event of a crash over

state-ful servers. In stateless servers, a client only need to retry a

request until the server responds; the client does not need to know

that the server has crashed.

NFS version 3 could be hacked easily if it is not on a secure

dedicated network, because security is enforced at only client

level instead of server level. Like HTTP and FTP it is also a

stateless protocol, so it is lack of performance since it must assert

its present state with all operations, unlike version 4 it does not

define Open and Close operations. It only supports Read and

Write operations. File locking was added later but still it could be

hacked on a network.

NFS version 4 features improved access and better performance

over the Internet, strong security with negotiation built into the

protocol, good cross-platform interoperability and was designed

for protocol extensions. It has ability to migrate or replicate file

systems by the use of a special file attributes i.e. file system

locations attribute which provides a method for the client to probe

the server about the location of a file system.

During the migration of a file system, the client will receive an

error when operating on the file system and it can then query as to

the new file system location. Similarly replication is done; the

client is capable to query the server for the multiple available

locations of a particular file system. From this information, the

client can use its own policies to access the appropriate file

system location. Version 4 also introduces OPEN and CLOSE

operations. The OPEN operation provides a single point where

file lookup, creation, and share semantics can be combined. The

CLOSE operation provides for the release of the state

accumulated by OPEN.

3. AFS
In 1980s Carnegie Mellon University researchers introduced. The

main goal of AFS was to design a distributed file system so that

server can support as many clients as possible. The first version of

AFS was called ITC distributed file system(S+85). The AFS is a

distributed network file system which enables access to files from

any machine located at far distances like they are stored locally.

AFS is composed of cells and each cell represents an independent

portion of the file space. Cells are connected to form UNIX file

system under root “/afs” directory. An AFS cell is a collection of

servers grouped together administratively which presents a single,

cohesive file system. Some advantages of using AFS are caching

facility, security features, simplicity of addressing, scalability,

single system image, replicated AFS volume, communications

protocol, and ease of networking. AFS volume(s) which constitute

mailto:amalmohsin21@tntech.edu

"/home" can be simply moved between the servers. It could be

achieved without any intervention to the users’ work, while users

are using files actively in "/home" directory.

AFS client machine runs a Cache Manager for caching which

maintains information about the identities of the users who are

logged into the machine, and it finds and requests data on their

behalf, and keeps chunks of retrieved files on local disk. As a

result of this as soon as a remote file is accessed, a portion of that

file gets copied to local disk. Thus subsequent accesses are as fast

as local disk, and considerably faster than a cold read (across the

network). Caching locally reduces the amount of network traffic,

which improves performance when cold reading across the

network.

AFS uses Kerberos network authenticating protocol to

authenticate users which improves security by not passing

plaintext passwords on the network, and by making encrypted

passwords invisible. AFS also uses Access Control Lists (ACLs)

to enable users to restrict access to their own directories. User

does not need to know which fileserver has the requested file; the

user only needs to know the pathname of a file and the name of

the AFS cell where the file is stored. When a user authenticates

using the “klog” command he/she will be prompted for a

password. If the password is accepted Kerberos Authentication

Server (KAS) will provide the user with an encrypted token,

which will expire after the limited lifetime. The “log” and “unlog”

commands are used to make authentication more convenient. Log

re-authenticates a user if the tokens have timed out, and unlog

discards the tokens.

4. ZFS
A third UNIX file system is the ZFS file system. ZFS was

designed by Sun Microsystems. It is mainly used by Sun's

operating system, Solaris, but can be implemented on many

operating systems. ZFS allows for end to end data integrity and

pooled storage. ZFS is a 128-bit file system. This allows there to

be no limit to how much can be on the system including files,

snapshots, links, or directories.

Pooled storage is a model that doesn't use the concept of volumes.

Many of the file systems can draw from one storage pool and only

take up the space that is needed to complete its task. The

combined I/O bandwidth of every device that is in the pool is

available to every file system at all times.

A big part of ZFS is data integrity. Every block of storage is

checksummed to prevent data corruption. Using mirror or a RAID

configuration, the data can actually be self-healing. If a copy

becomes damaged, ZFS will repair this copy with another one.

ZFS also introduces a new replication model called RAID-Z.

RAID-Z uses variable stripes. ZFS also offers disk scrubbing that

traverses the entire storage pool and validates the data with a 256-

bit checksum and repairs where needed. It can do disk scrubbing

while the system is live. ZFS also allows the use of unlimited

snapshots. A snapshot is a read-only, point-in-time copy of a file

system. Any of the snapshots can be a full backup to the file

system while any number of pairs of snapshots can be made into

an incremental backup.

In ZFS device driver exports a block device to the Storage Pool

Allocator (SPA). The SPA handles block and I/O allocation;

exports virtually addressed, explicitly allocated freed blocks to the

Data Management Unit (DMU). The DMU turns the virtually

addressed blocks from the SPA into a transactional object

interface for the ZFS POSIX Layer (ZPL). Finally, the ZPL

implements a POSIX file system on top of DMU objects, and

exports vnode operations to the system call layer.

The SPA allocates blocks from all the devices in a storage pool.

One system can have multiple storage pools, although most

systems will only need one pool. Unlike a volume manager, the

SPA does not present itself as a logical block device. Instead, it

presents itself as an interface to allocate and free virtually

addressed blocks - basically, malloc() and free() for disk space.

We call the virtual addresses of disk blocks data virtual addresses

(DVAs). Using virtually addressed blocks makes it easy to

implement several of our design principles. It allows dynamic

addition and removal of devices from the storage pool without

interrupting service.

5. GFS
Google File System was invented by Google Inc to meet the

rapidly growing demand of their data processing needs and their

goal was to build a huge storage network by using inexpensive

hardware and system must constantly monitor itself on a routine

basis to detect, tolerate, and recover promptly from component

failures. Their goal was to include constant monitoring, error

detection, fault tolerance, and automatic recovery features as an

integral part of the file system. After deletion of a file, GFS does

not immediately reclaim the storage. It does reclaiming during

regular garbage collection at both the file and chunk levels which

makes the system simple and reliable.

GFS provides a common file system interface, but does not

implement a standard API such as POSIX. Files are organized

hierarchically in directories and are identified by pathnames. It

also supports the usual operations to create, delete, open, close,

read, and write files. GFS supports creating copy of a file or a

directory tree at low cost. It also supports multiple clients to

append data to the same file along with guaranteeing atomicity of

each individual client’s append. It is useful for implementing

multi-way merge results and queues that many clients can

simultaneously append, without additional locking.

A GFS cluster consists of a single master and multiple chunk

servers and can be accessed by multiple clients and these are

typically Linux machines running user level server process. Also

it is easy to run both chunk server and client on the same machine

as long as machine configuration allows. Files are divided into

fixed-size chunks. Each chunk is identified by an immutable and

globally unique 64 bit which is much larger than typical file

system block sizes chunk handle assigned by the master at the

time of chunk creation. Chunk servers store chunks on local disks

as Linux files and read or write chunk data specified by a chunk

handle and byte range. For reliability, chunks are replicated on

multiple chunk servers.

The master stores three types of metadata. The file and chunk

name spaces, the mapping from files to chunks and the location of

replica of each chunk. Name spaces and file-to-chunk mapping

are kept persistent by logging mutations to an operation log and is

stored on the master’s local disk and replicated on remote

machines.

6. ACKNOWLEDGMENTS
My thanks to ACM, University of California-Santa Cruz, and

Carnegie Mellon University for sharing their resources.

7. REFERENCES
[1] Bonwick, Jeff, Matt Ahrens, Val Henson, Mark Maybee, and

Mark Shellenbaum. "The Zettabyte File System." n. pag.

Web. 3 Nov 2010.

http://users.soe.ucsc.edu/~sbrandt/221/zfs_overview.pdf

[2] "File Systems Support." FreeBSD Handbook. FreeBSD,

Web. 3 Nov 2010.

http://www.freebsd.org/doc/en/books/handbook/filesystems-

zfs.html

[3] Howard, John. "An Overview Of Andrew File System." n.

pag. Web. 2 Nov 2010.

http://reports-archive.adm.cs.cmu.edu/anon/itc/CMU-ITC-

062.pdf

[4] "NFS: Network File System." Sun Microsystems (1994): n.

pag. Web. 4 Nov 2010.

http://www.connectathon.org/nfsv3.pdf

[5] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung,

"The Google File System.” Web. 8 Nov 2010.

http://static.googleusercontent.com/external_content/untruste

d_dlcp/labs.google.com/en/us/papers/gfs-sosp2003.pdf

http://users.soe.ucsc.edu/~sbrandt/221/zfs_overview.pdf
http://www.freebsd.org/doc/en/books/handbook/filesystems-zfs.html
http://www.freebsd.org/doc/en/books/handbook/filesystems-zfs.html
http://reports-archive.adm.cs.cmu.edu/anon/itc/CMU-ITC-062.pdf
http://reports-archive.adm.cs.cmu.edu/anon/itc/CMU-ITC-062.pdf
http://www.connectathon.org/nfsv3.pdf
http://static.googleusercontent.com/external_content/untrusted_dlcp/labs.google.com/en/us/papers/gfs-sosp2003.pdf
http://static.googleusercontent.com/external_content/untrusted_dlcp/labs.google.com/en/us/papers/gfs-sosp2003.pdf

